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Abstract

         This paper attempts to define an object-oriented database      system.  It
describes the main features and characteristics that a      system must have to
qualify as an object-oriented database system.
       We have separated these characteristics into three groups:
     o Mandatory, the ones the system must satisfy in order to be  termed an
object-oriented database system.  These are complex   objects, object identity,
encapsulation, types or classes, inheritance, overriding combined with late
binding, extensibility, computational completeness, persistence, secondary
storage management, concurrency, recovery and an ad  hoc query facility.
     o Optional, the ones that can be added to make the system better, but which
are not mandatory.  These are multiple inheritance, type checking and
inferencing, distribution, design transactions and versions.
     o Open, the points where the designer can make a number of   choices.  These
are the programming paradigm, the representation   system, the type system,
and uniformity.
         We have taken a position, not so much expecting it to be the  final word as
to erect a provisional landmark to orient further  debate.

1  Introduction

Currently, object-oriented database systems (OODBS) are receiving a lot of  attention from both experimental
and theoretical standpoints, and there has  been considerable debate about the definition of such systems.

Three points characterize the field at this stage:  (i) the lack of a  common data model, (ii) the lack of formal
foundations and (iii) strong  experimental activity.

Whereas Codd's original paper [Codd 70] gave a clear specification of a  relational database system (data
model and query language), no such  specification exists for object-oriented database systems [Maier 89].  We
are not claiming here that no complete object-oriented data model exists,  indeed many proposals can be
found in the literature (see  [Albano et al.  1986], [Lecluse and Richard 89], [Carey et al.  88] as  examples),
but rather that there is no consensus on a single one.  Opinion  is slowly converging on the gross
characteristics of a family of  object-oriented systems, but, at present, there is no clear consensus on  what an
object-oriented system is, let alone an object-oriented database  system.

The second characteristic of the field is the lack of a strong theoretical  framework.  To compare object-
oriented programming to logic programming,  there is no equivalent of [Van Emdem and Kowalski 76].  The
need for a  solid underlying theory is obvious:  the semantics of concepts such as  types or programs are often
ill defined.  The absence of a solid  theoretical framework, makes consensus on the data model almost
impossible  to achieve.



Finally, a lot of experimental work is underway:  people are actually  building systems.  Some of these
systems are just prototypes  [Bancilhon et al.  88], [Nixon, et al.  87], [Banerjee et al.  87],  [Skarra et al.  86],
[Fishman et al.  87], [Carey et al.  86], but some are  commercial products, [Atwood 85], [Maier, et al.  84],
[Caruso and Sciore 87], [G-Base 88].  The interest in object-oriented  databases seems to be driven by the
needs of design support systems (e.g.,  CAD, CASE, Office Information Systems).  These applications require
databases that can handle very complex data, that can evolve gracefully,  and that can provide the high-
performance dictated by interactive systems.

The implementation situation is analogous to relational database systems in  the mid-seventies (though there
are more start-ups in the object-oriented  case).  For relational systems, even though there were some
disagreements  on a few specific points, such as the form of the query language, or  whether relations should
be sets or bags, these distinctions were in most  cases superficial and there was a common underlying model.
People were  mainly developing implementation technology.  Today, we are simultaneously  choosing the
specification of the system and producing the technology to  support its implementation.

Thus, with respect to the specification of the system, we are taking a  Darwinian approach:  we hope that, out
of the set of experimental  prototypes being built, a fit model will emerge.  We also hope that viable
implementation technology for that model will evolve simultaneously.

Unfortunately, with the flurry of experimentation, we risk a system  emerging as the system, not because it is
the fittest, but because it is  the first one to provide a significant subset of the functionality demanded  by the
market.  It is a classical, and unfortunate, pattern of the computer  field that an early product becomes the de
facto standard and never  disappears.  This pattern is true at least for languages and operating  systems
(Fortran, Lisp, Cobol and SQL are good examples of such situations).  Note however, that our goal here is not
to standardize  languages, but to refine terminology.

It is important to agree now on a definition of an object-oriented database  systems.  As a first step towards
this goal, this paper suggests  characteristics that such systems should possess.  We expect that the paper  will
be used as a straw man, and that others will either invalidate or  confirm the points mentioned here.  Note that
this paper is not a survey of  the state of the art on OODBS technology and do not pretend to assess the
current status of the technology, it merely proposes a set of definitions.

We have separated the characteristics of object-oriented database systems  into three categories:  mandatory
(the ones that the system must satisfy to  deserve the label), optional (the ones that can be added to make the
system  better but which are not mandatory) and open (the places where the designer  can select from a
number of equally acceptable solutions).  In addition,  there is some leeway how to best formulate each
characteristic (mandatory  as well as optional).

The rest of this paper is organized as follows.  Section 2 describes the  mandatory features of an OODBS.
Section 3 describes its optional features  and Section 4 presents the degrees of freedom left to the system
designers.

  2  Mandatory features:  the Golden Rules

An object-oriented database system must satisfy two criteria:  it should be  a DBMS, and it should be an
object-oriented system, i.e., to the extent  possible, it should be consistent with the current crop of object-
oriented  programming languages.  The first criterion translates into five features:  persistence, secondary
storage management, concurrency, recovery and an ad  hoc query facility.  The second one translates into
eight features:  complex objects, object identity, encapsulation, types or classes,  inheritance, overriding
combined with late binding, extensibility and  computational completeness.

  2.1  Complex objects

Thou shalt support complex objects



  Complex objects are built from simpler ones by applying constructors to  them.  The simplest objects are
objects such as integers, characters, byte  strings of any length, booleans and floats (one might add other
atomic  types).  There are various complex object constructors:  tuples, sets,  bags, lists, and arrays are
examples.  The minimal set of constructors that  the system should have are set, list and tuple.  Sets are
critical because  they are a natural way of representing collections from the real world.  Tuples are critical
because they are a natural way of representing  properties of an entity.  Of course, both sets and tuples are
important  because they gained wide acceptance as object constructors through the  relational model.  Lists or
arrays are important because they capture order, which occurs in the real world, and they also arise in many
scientific applications, where people need matrices or time series data.

The object constructors must be orthogonal:  any constructor should apply  to any object.  The constructors of
the relational model are not  orthogonal, because the set construct can only be applied to tuples and the  tuple
constructor can only be applied to atomic values.  Other examples are  non-first normal form relational
models in which the top level construct  must always be a relation.

Note that supporting complex objects also requires that appropriate  operators must be provided for dealing
with such objects (whatever their  composition).  That is, operations on a complex object must propagate
transitively to all its components.  Examples include the retrieval or  deletion of an entire complex object or
the production of a ``deep'' copy  (in contrast to a ``shallow'' copy where components are not replicated, but
are instead referenced by the copy of the object root only).  Additional  operations on complex objects may be
defined, of course, by users of the  system (see the extensibility rule below).  However, this capability
requires some system provided provisions such as two distinguishable types  of references (``is-part-of'' and
``general'').

  2.2  Object identity

Thou shalt support object identity

  Object identity has long existed in programming languages.  The concept is  more recent in databases, e.g.,
[Hall et al.  76], [Maier and Price 84],  [Khoshafian and Copeland 86].  The idea is the following:  in a model
with  object identity, an object has an existence which is independent of its  value.  Thus two notions of object
equivalence exist:  two objects can be  identical (they are the same object) or they can be equal (they have the
same value).  This has two implications:  one is object sharing and the  other one is object updates.

Object sharing:  in an identity-based model, two objects can share a  component.  Thus, the pictorial
representation of a complex object is a  graph, while it is limited to be a tree in a system without object
identity.  Consider the following example:  a Person has a name, an age and  a set of children.  Assume Peter
and Susan both have a 15-year-old child  named John.  In real life, two situations may arise:  Susan and Peter
are  parent of the same child or there are two children involved.  In a system  without identity, Peter is
represented by:

          (peter, 40, -(john, 15, -")")

  and Susan is represented by:

(susan, 41, -(john, 15, -")").

  Thus, there is no way of expressing whether Peter and Susan are the parents  of the same child.  In an
identity-based model, these two structures can  share the common part (john, 15, {}) or not, thus capturing
either  situations.

Object updates:  assume that Peter and Susan are indeed parents of a child  named John.  In this case, all
updates to Susan's son will be applied to  the object John and, consequently, also to Peter's son.  In a value-
based  system, both sub-objects must be updated separately.  Object identity is  also a powerful data
manipulation primitive that can be the basis of set,  tuple and recursive complex object manipulation,
[Abiteboul and Kanellakis 89].



Supporting object identity implies offering operations such as object  assignment, object copy (both deep and
shallow copy) and tests for object  identity and object equality (both deep and shallow equality).

Of course, one can simulate object identity in a value-based system by  introducing explicit object identifiers.
However, this approach places the  burden on the user to insure the uniqueness of object identifiers and to
maintain referential integrity (and this burden can be significant for  operations such as garbage collection).

Note that identity-based models are the norm in imperative programming  languages:  each object
manipulated in a program has an identity and can be  updated.  This identity either comes from the name of a
variable or from a  physical location in memory.  But the concept is quite new in pure  relational systems,
where relations are value-based.

  2.3  Encapsulation

Thou shalt encapsulate thine objects

  The idea of encapsulation comes from (i) the need to cleanly distinguish  between the specification and the
implementation of an operation and (ii)  the need for modularity.  Modularity is necessary to structure
complex  applications designed and implemented by a team of programmers.  It is also  necessary as a tool for
protection and authorization.

There are two views of encapsulation:  the programming language view (which  is the original view since the
concept originated there) and the database  adaptation of that view.

The idea of encapsulation in programming languages comes from abstract data  types.  In this view, an object
has an interface part and an implementation  part.  The interface part is the specification of the set of
operations  that can be performed on the object.  It is the only visible part of the  object.  The implementation
part has a data part and a procedural part.

The data part is the representation or state of the object and the  procedure part describes, in some
programming language, the implementation  of each operation.

The database translation of the principle is that an object encapsulates  both program and data.  In the
database world, it is not clear whether the  structural part of the type is or is not part of the interface (this
depends on the system), while in the programming language world, the data  structure is clearly part of the
implementation and not of the interface.

Consider, for instance, an Employee.  In a relational system, an employee  is represented by some tuple.  It is
queried using a relational language  and, later, an application programmer writes programs to update this
record  such as to raise an Employee's salary or to fire an Employee.  These are  generally either written in a
imperative programming language with embedded  DML statements or in a fourth generation language and
are stored in a  traditional file system and not in the database.  Thus, in this approach,  there is a sharp
distinction between program and data, and between the  query language (for ad hoc queries) and the
programming language (for  application programs).

In an object-oriented system, we define the Employee as an object that has  a data part (probably very similar
to the record that was defined for the  relational system) and an operation part, which consists of the raise and
fire operations and other operations to access the Employee data.  When  storing a set of Employees, both the
data and the operations are stored in  the database.

Thus, there is a single model for data and operations, and information can  be hidden.  No operations, outside
those specified in the interface, can be  performed.  This restriction holds for both update and retrieval
operations.



Encapsulation provides a form of ``logical data independence'':  we can  change the implementation of a type
without changing any of the programs  using that type.  Thus, the application programs are protected from
implementation changes in the lower layers of the system.

We believe that proper encapsulation is obtained when only the operations  are visible and the data and the
implementation of the operations are  hidden in the objects.

However, there are cases where encapsulation is not needed, and the use of  the system can be significantly
simplified if the system allows  encapsulation to be be violated under certain conditions.  For example,  with
ad-hoc queries the need for encapsulation is reduced since issues such  as maintainability are not important.
Thus, an encapsulation mechanism  must be provided by an OODBS, but there appear to be cases where its
enforcement is not appropriate.

2.4  Types and Classes

Thou shalt support types or classes

  This issue is touchy:  there are two main categories of object-oriented  systems, those supporting the notion
of class and those supporting the  notion of type.  In the first category, are systems such as Smalltalk
[Goldberg and Robson 83], Gemstone [Maier, et al.  84], Vision  [Caruso and Sciore 87], and more generally
all the systems of the Smalltalk  family, Orion [Banerjee et al.  87], Flavors [Bobrow and Steifik 81],  G-Base
[G-Base 88], Lore [Caseau 89] and more generally all the systems  derived from Lisp.  In the second
category, we find systems such as C++  [Stroustrup 86], Simula [Simula 67], Trellis/Owl [Schaffert, et al.
86],  Vbase [Atwood 85] and O2[Bancilhon et al.  88].

A type, in an object-oriented system, summarizes the common features of a  set of objects with the same
characteristics.  It corresponds to the notion  of an abstract data type.  It has two parts:  the interface and the
implementation (or implementations).  Only the interface part is visible to  the users of the type, the
implementation of the object is seen only by the  type designer.  The interface consists of a list of operations
together  with their signatures (i.e., the type of the input parameters and the type  of the result).

The type implementation consists of a data part and an operation part.  In  the data part, one describes the
internal structure of the object's data.  Depending on the power of the system, the structure of this data part
can  be more or less complex.  The operation part consists of procedures which  implement the operations of
the interface part.

In programming languages, types are tools to increase programmer  productivity, by insuring program
correctness.  By forcing the user to  declare the types of the variables and expressions he/she manipulates, the
system reasons about the correctness of programs based on this typing  information.  If the type system is
designed carefully, the system can do  the type checking at compile-time, otherwise some of it might have to
be  deferred at compile time.  Thus types are mainly used at compile time to  check the correctness of the
programs.  In general, in type-based systems,  a type is not a first class citizen and has a special status and
cannot be  modified at run-time.

The notion of class is different from that of type.  Its specification is  the same as that of a type, but it is more
of a run-time notion.  It  contains two aspects:  an object factory and an object warehouse.  The  object factory
can be used to create new objects, by performing the  operation new on the class, or by cloning some
prototype object  representative of the class.  The object warehouse means that attached to  the class is its
extension, i.e., the set of objects that are instances of  the class.  The user can manipulate the warehouse by
applying operations on  all elements of the class.  Classes are not used for checking the  correctness of a
program but rather to create and manipulate objects.  In  most systems that employ the class mechanism,
classes are first class



citizens and, as such, can be manipulated at run-time, i.e., updated or  passed as parameters.  In most cases,
while providing the system with  increased flexibility and uniformity, this renders compile-time type
checking impossible.

Of course, there are strong similarities between classes and types, the  names have been used with both
meanings and the differences can be subtle  in some systems.

We do not feel that we should choose one of these two approaches and we  consider the choice between the
two should be left to the designer of the  system (see Section 4.3).  We require, however, that the system
should  offer some form of data structuring mechanism, be it classes or types.  Thus the classical notion of
database schema will be replaced by that of a  set of classes or a set of types.

We do not, however, feel that is necessary for the system to automatically  maintain the extent of a type (i.e.,
the set of objects of a given type in  the database) or, if the extent of a type is maintained, for the system to
make it accessible to the user.  Consider, for example, the rectangle type,  which can be used in many
databases by multiple users.  It does not make  sense to talk about the set of all rectangles maintained by the
system or  to perform operations on them.  We think it is more realistic to ask each  user to maintain and
manipulate its own set of rectangles.  On the other  hand, in the case of a type such as employee, it might be
nice for the  system to automatically maintain the employee extent.

  2.5  Class or Type Hierarchies

Thine classes or types shalt inherit from their ancestors

  Inheritance has two advantages:  it is a powerful modeling tool, because it  gives a concise and precise
description of the world and it helps in  factoring out shared specifications and implementations in
applications.

An example will help illustrate the interest in having the system provide  an inheritance mechanism.  Assume
that we have Employees and Students.  Each Employee has a name, an age above 18 and a salary, he or she
can die,  get married and be paid (how dull is the life of the Employee!).  Each  Student has an age, a name
and a set of grades.  He or she can die, get  married and have his or her GPA computed.

In a relational system, the data base designer defines a relation for  Employee, a relation for Student, writes
the code for the die, marry and  pay operations on the Employee relation, and writes the code for the die,
marry and GPA computation for the Student relation.  Thus, the application  programmer writes six programs.

In an object-oriented system, using the inheritance property, we recognize  that Employees and Students are
Persons; thus, they have something in  common (the fact of being a Person), and they also have something
specific.

We introduce a type Person, which has attributes name and age and we write  the operations die and marry for
this type.  Then, we declare that  Employees are special types of Persons, who inherit attributes and
operations, and have a special attribute salary and a special operation  pay.  Similarly, we declare that a
Student is a special kind of Person,  with a specific set-of-grades attribute and a special operation GPA
computation.  In this case, we have a better structured and more concise  description of the schema (we
factored out specification) and we have only  written four programs (we factored out implementation).
Inheritance helps  code reusability, because every program is at the level at which the  largest number of
objects can share it.

There are at least four types of inheritance:  substitution inheritance,  inclusion inheritance, constraint
inheritance and specialization  inheritance.

In substitution inheritance, we say that a type t inherits from a type t',  if we can perform more operations on
objects of type t than on object of  type t'.  Thus, any place where we can have an object of type t', we can
substitute for it an object of type t.  This kind of inheritance is based  on behavior and not on values.



Inclusion inheritance corresponds to the notion of classification.  It  states that t is subtype of t', if every object
of type t is also an object  of type t'.  This type of inheritance is based on structure and not on  operations.  An
example is a square type with methods get, set(size) and  filled-square, with methods get, set(size), and
fill(color).

Constraint inheritance is a subcase of inclusion inheritance.  A type t is  a subtype of a type t', if it consists of
all objects of type t which  satisfy a given constraint.  An example of such a inheritance is that  teenager is a
subclass of person:  teenagers don't have any more fields or  operations than persons but they obey more
specific constraints (their age  is restricted to be between 13 and 19).

With specialization inheritance, a type t is a subtype of a type t', if  objects of type t are objects of type t which
contains more specific  information.  Examples of such are persons and employees where the  information on
employees is that of persons together with some extra  fields.

Various degrees of these four types of inheritance are provided by existing  systems and prototypes, and we
do not prescribe a specific style of  inheritance.

  2.6  Overriding, overloading and late binding

Thou shalt not bind prematurely

  In contrast to the previous example, there are cases where one wants to  have the same name used for
different operations.  Consider, for example, the display operation:  it takes an object as input and displays it
on the  screen.  Depending on the type of the object, we want to use different  display mechanisms.  If the
object is a picture, we want it to appear on  the screen.  If the object is a person, we want some form of a tuple
printed.  Finally, if the object is a graph, we will want its graphical  representation.  Consider now the
problem of displaying a set, the type of  whose members is unknown at compile time.

In an application using a conventional system, we have three operations:  display-person, display-bitmap and
display-graph.  The programmer will test  the type of each object in the set and use the corresponding display
operation.  This forces the programmer, to be aware of all the possible  types of the objects in the set, to be
aware of the associated display  operation, and to use it accordingly.

  for x in X do
begin
case of type(x)
        person: display(x);
        bitmap: display-bitmap(x);
        graph: display-graph(x);
     end
    end

  In an object-oriented system, we define the display operation at the object  type level (the most general type
in the system).  Thus, display has a  single name and can be used indifferently on graphs, persons and
pictures.  However, we redefine the implementation of the operation for each of the  types according to the
type (this redefinition is called overriding).  This  results in a single name (display) denoting three different
programs (this  is called overloading).  To display the set of elements, we simply apply  the display operations
to each one of them, and let the system pick the  appropriate implementation at run-time.

  for x in X do  display(x)

  Here, we gain a different advantage:  the type implementors still write the  same number of programs.  But
the application programmer does not have to  worry about three different programs.  In addition, the code is
simpler as  there is no case statement on types.  Finally, the code is more  maintainable as when a new type is



introduced as new instance of the type  are added, the display program will continue to work without
modification.  (provided that we override the display method for that new type).

In order to provide this new functionality, the system cannot bind  operation names to programs at compile
time.  Therefore, operation names  must be resolved (translated into program addresses) at run-time.  This
delayed translation is called is called late binding.

Note that, even though late binding makes type checking more difficult (and  in some cases impossible), it
does not preclude it completely.

  2.7  Computational completeness

Thou shalt be computationally complete

  From a programming language point of view, this property is obvious:  it  simply means that one can express
any computable function, using the DML of  the database system.  From a database point of view this is a
novelty,  since SQL for instance is not complete.

We are not advocating here that designers of object-oriented database  systems design new programming
languages:  computational completeness can  be introduced through a reasonable connection to existing
programming  languages.  Most systems indeed use an existing programming language  [Banerjee et al.  87],
[Fishman et al.  87], [Atwood 85],  [Bancilhon et al.  88]; see [Bancilhon and Maier 88] for a discussion of
this problem.

Note that this is different from being ``resource complete'', i.e., being  able to access all resources of the
system (e.g.  screen and remote  communication) from within the language.  Therefore, the system, even
though computationally complete might not be able to express a complete  application.  It is, however, more
powerful than a database system which  only stores and retrieves data and performs simple computations on
atomic  values.

  2.8  Extensibility

Thou shalt be extensible

  The database system comes with a set of predefined types.  These types can  be used at will by programmers
to write their applications.  This set of  type must be extensible in the following sense:  there is a means to
define  new types and there is no distinction in usage between system defined and  user defined types.  Of
course, there might be a strong difference in the  way system and user defined types are supported by the
system, but this  should be invisible to the application and to the application programmer.  Recall that this
type definition includes the definition of operations on  the types.  Note that the encapsulation requirement
implies that there will  be a mechanism for defining new types.  This requirement strengthens that  capability
by saying that newly created types must have the same status as  existing ones.

However, we do not require that the collection of type constructors  (tuples, sets, lists, etc.)  be extensible.

2.9  Persistence

Thou shalt remember thy data

  This requirement is evident from a database point of view, but a novelty  from a programming language
point of view, [Atkinson et al.  83].  Persistence is the ability of the programmer to have her/his data survive
the execution of a process, in order to eventually reuse it in another  process.  Persistence should be
orthogonal, i.e., each object, independent  of its type, is allowed to become persistent as such (i.e., without
explicit translation).  It should also be implicit:  the user should not  have to explicitly move or copy data to
make it persistent.



  2.10  Secondary storage management

Thou shalt manage very large databases

  Secondary storage management is a classical feature of database management  systems.  It is usually
supported through a set of mechanisms.  These  include index management, data clustering, data buffering,
access path  selection and query optimization.

None of these is visible to the user:  they are simply performance  features.  However, they are so critical in
terms of performance that their  absence will keep the system from performing some tasks (simply because
they take too much time).  The important point is that they be invisible.  The application programmer should
not have to write code to maintain  indices, to allocate disk storage, or to move data between disk and main
memory.  Thus, there should be a clear independence between the logical and  the physical level of the
system.

  2.11  Concurrency

Thou shalt accept concurrent users

  With respect to the management of multiple users concurrently interacting  with the system, the system
should offer the same level of service as  current database systems provide.  It should therefore insure
harmonious  coexistence among users working simultaneously on the database.  The system  should therefore
support the standard notion of atomicity of a sequence of  operations and of controlled sharing.  Serializability
of operations should  at least be offered, although less strict alternatives may be offerered.

  2.12  Recovery

Thou shalt recover from hardware and software failures

  Here again, the system should provide the same level of service as current  database systems.  Therefore, in
case of hardware or software failures, the  system should recover, i.e., bring itself back to some coherent state
of  the data.  Hardware failures include both processor and disk failures.

  2.13  Ad Hoc Query Facility

Thou shalt have a simple way of querying data

The main problem here is to provide the functionality of an ad hoc query  language.  We do not require that it
be done in the form of a query  language but just that the service be provided.  For instance, a graphical
browser could be sufficient to fulfill this functionality.  The service  consists of allowing the user to ask
simple queries to the database simply.  The obvious yardstick is of course relational systems, thus the test is to
take a number of representative relational queries and to check whether  they can be stated with the same
amount of work.  Note that this facility  could be supported by the data manipulation language or a subset of
it.

We believe that a query facility should satisfy the following three  criteria:  (i) It should be high level, i.e., one
should be able to express  (in a few words or in a few mouse clicks) non-trivial queries concisely.  This
implies that it should be reasonably declarative, i.e., it should  emphasize the what and not the how.  (ii) It
should be efficient.  That is,  the formulation of the queries should lend itself to some form of query
optimization.  (iii) It should be application independent, i.e., it should  work on any possible database.  This
last requirements eliminates specific  querying facilities which are application dependent, or require writing
additional operations on each user-defined type.



  2.14  Summary

  This concludes the list of mandatory features and the distinction between  traditional and object-oriented
database systems should be clear.  Relational database systems do not satisfy rules 1 through 8.  CODASYL
database systems partially satisfy rules 1 and 2.  Some people have argued  that object-oriented database
systems are nothing more than CODASYL  systems.  It should be noted that (i) CODASYL systems do not
completely  satisfy these two rules (the object constructors are not orthogonal and  object identity is not
treated uniformly since relationships are restricted  to be 1:n), and (ii) they do not satisfy rules 3, 5, 6, 8 and
13.

There is a collection of features for which the authors have not reached  consensus on whether they should be
required or optional.  These features  are:

  o view definition and derived data;
  o database administration utilities;
  o integrity constraints;
  o schema evolution facility.

  3  Optional features:  the goodies

We put under this heading things which clearly improve the system, but  which are not mandatory to make it
an object-oriented database system.

Some of these features are of an object oriented nature (e.g.  multiple  inheritance).  They are included in this
category because, even though they  make the system more object-oriented, they do not belong in the core
requirements.

Other features are simply database features (e.g.  design transaction  management).  These characteristics
usually improve the functionality of a  data base system, but they are not in the core requirement of database
systems and they are unrelated to the object oriented aspect.  In fact most  of them are targeted at serving
``new'' applications (CAD/CAM, CASE, Office  automation, etc.)  and are more application oriented than
technology  oriented.  Because many object-oriented database systems are currently  aiming at these new
applications, there has been some confusion between  these features and the object-oriented nature of the
system.

  3.1  Multiple inheritance

Whether the system provides multiple inheritance or not is an option.  Since agreement on multiple
inheritance in the object-oriented community  has not yet been reached, we consider providing it to be
optional.  Note  that once one decides to support multiple inheritance, there are many  possible solutions for
dealing with the problem of conflict resolution.

  3.2  Type checking and type inferencing

The degree of type checking that the system will perform at compile time is  left open but the more the better.
The optimal situation is the one where  a program which was accepted by the compiler cannot produce any
run-time  type errors.  The amount of type inferencing is also left open to the  system designer:  the more the
better, the ideal situation is the one in  which only the base types have to be declared and the system infers the
temporary types.

  3.3  Distribution

It should be clear that this characteristic is orthogonal to the  object-oriented nature of the system.  Thus, the
database system can be  distributed or not.



3.4  Design transactions

In most new applications, the transaction model of classical business  oriented database system is not
satisfactory:  transactions tend to be very  long and the usual serializability criterion is not adequate.  Thus,
many  OODBSs support design transactions (long transactions or nested  transactions).

  3.5  Versions

Most of the new applications (CAD/CAM and CASE) involve a design activity  and require some form of
versioning.  Thus, many OODBSs support versions.  Once again, providing a versioning mechanism this is
not part of the core  requirements for the system.

  4  Open choices

Every system which satisfies rules 1 through 13 deserves the OODBS label.  When designing such a system,
there are still a lot of design choices to be  made.  These are the degrees of freedom for the OODBS
implementors.  These  characteristics differ from the mandatory ones in the sense that no  consensus has yet
been reached by the scientific community concerning them.  They also differ from the optional features in that
we do not know which of  the alternatives are more or less object-oriented.

  4.1  Programming paradigm

We see no reason why we should impose one programming paradigm more than  another:  the logic
programming style [Bancilhon 86], [Zaniolo 86], the  functional programming style [Albano et al.  1986],
[Banerjee et al.  87],  or the imperative programming style [Stroustrup 86], [Eiffel 87],  [Atwood 85] could all
be chosen as programming paradigms.  Another solution  is that the system be independent of the
programming style and support  multiple programming paradigms [Skarra et al.  86], [Bancilhon et al.  88].

Of course, the choice of the syntax is also free and people will argue  forever whether one should write ``john
hire'' or ``john.hire'' or ``hire  john'' or ``hire(john)''.

  4.2  Representation system

The representation system is defined by the set of atomic types and the set  of constructors.  Even though we
gave a minimal set of atomic types and  constructors ( elementary types from programming languages, and
set, tuple  and list constructors) available for describing the representation of  objects, can be extended in
many different ways.

4.3  Type system

There is also freedom with respect to the type formers.  The only type  formation facility we require is
encapsulation.  There can be other type  formers such as generic types or type generator (such as set[T], where
T  can be an arbitrary type), restriction, union and arrow (functions).

Another option is whether the type system is second order.  Finally, the  type system for variables might be
richer than the type system for objects.

  4.4  Uniformity

There is a heated debate on the degree of uniformity one should expect of  such systems:  is a type an object?
is a method an object?  or should  these three notions be treated differently?  We can view this problem at
three different levels:  the implementation level, the programming language  level and the interface level.



At the implementation level, one must decide whether type information  should be stored as objects, or
whether an ad hoc system must be  implemented.  This is the same issue relational database systems designers
have to face when they must decide whether to store the schema as a table  or in some ad hoc fashion.  The
decision should be made based on  performance and ease of implementation grounds.  Whatever, decision is
made  is, however, independent from the one taken at the next level up.

At the programming language level, the question is the following:  are  types first class entities in the
semantics of the language.  Most of the  debate is concentrated on this question.  There are probably different
styles of uniformity (syntactical or semantical).  Full uniformity at this  level is also inconsistent with static
type checking.

Finally, at the interface level, another independent decision must be made.  One might want to present the
user with a uniform view of types, objects,  and methods, even if in the semantics of the programming
language, these  are notions of a different nature.  Conversely, one could present them as  different entities,
even though the programming language views them as the  same thing.  That decision must be made based on
human factor criteria.

  5  Conclusions

Several other authors, [Kim 88] and [Dittrich 1986] argue that an OODBS is  a DBMS with an underlying
object-oriented data model.  If one takes the  notion of a data model in a broad sense that especially includes
the  additional aspects going beyond record-orientation, this view is certainly  in accordance with our
approach.  [Dittrich 1986] and [Dittrich 1988]  introduce a classification of object-oriented data models (and,
consequently, of OODBS): if it supports complex objects, a model is called  structurally object-oriented; if
extensibility is provided, is it called  behaviorally object-oriented ; a fully object-oriented model has to offer
both features.  This definition also requires persistence, disk management, concurrency, and recovery; it at
least implicitly assumes most of the other  features (where applicable, according to the various classes); in
total, it  is thus slightly more liberal than our approach.  However, as most current  systems and prototypes do
not fulfill all requirements mandated by our  definition anyway, this classification provides a useful
framework to  compare both existing and ongoing work.

We have proposed a collection of defining characteristics for an  object-oriented database system.  To the best
of our knowledge, the golden  rules presented in this paper are currently the most detailed definition of  an
object-oriented database system.  The choice of the characteristics and  our interpretation of them devolves
from out experience in specifying and  implementing the current round of systems.  Further experience with
the  design, implementation, and formalization of object-oriented databases will  undoubtedly modify and
refine our stance (in other words, don't be  surprised if you hear one of the authors lambasting the current
definition  in the future).  Our goal is only to put forth a concrete proposal to be  debated, critiqued and
analyzed by the scientific community.  Thus, our  last rule is:

  Thou shalt question the golden rules
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