
The Object-Oriented Database System Manifesto

Malcolm Atkinson Francois Bancilhon David DeWitt
University of Glasgow Alta"ir University of Wisconsin

Klaus Dittrich David Maier Stanley Zdonik
University of Zurich Oregon Graduate Center Brown University

Abstract

 This paper attempts to define an object-oriented database system. It
describes the main features and characteristics that a system must have to
qualify as an object-oriented database system.
 We have separated these characteristics into three groups:
 o Mandatory, the ones the system must satisfy in order to be termed an
object-oriented database system. These are complex objects, object identity,
encapsulation, types or classes, inheritance, overriding combined with late
binding, extensibility, computational completeness, persistence, secondary
storage management, concurrency, recovery and an ad hoc query facility.
 o Optional, the ones that can be added to make the system better, but which
are not mandatory. These are multiple inheritance, type checking and
inferencing, distribution, design transactions and versions.
 o Open, the points where the designer can make a number of choices. These
are the programming paradigm, the representation system, the type system,
and uniformity.
 We have taken a position, not so much expecting it to be the final word as
to erect a provisional landmark to orient further debate.

1 Introduction

Currently, object-oriented database systems (OODBS) are receiving a lot of attention from both experimental
and theoretical standpoints, and there has been considerable debate about the definition of such systems.

Three points characterize the field at this stage: (i) the lack of a common data model, (ii) the lack of formal
foundations and (iii) strong experimental activity.

Whereas Codd's original paper [Codd 70] gave a clear specification of a relational database system (data
model and query language), no such specification exists for object-oriented database systems [Maier 89]. We
are not claiming here that no complete object-oriented data model exists, indeed many proposals can be
found in the literature (see [Albano et al. 1986], [Lecluse and Richard 89], [Carey et al. 88] as examples),
but rather that there is no consensus on a single one. Opinion is slowly converging on the gross
characteristics of a family of object-oriented systems, but, at present, there is no clear consensus on what an
object-oriented system is, let alone an object-oriented database system.

The second characteristic of the field is the lack of a strong theoretical framework. To compare object-
oriented programming to logic programming, there is no equivalent of [Van Emdem and Kowalski 76]. The
need for a solid underlying theory is obvious: the semantics of concepts such as types or programs are often
ill defined. The absence of a solid theoretical framework, makes consensus on the data model almost
impossible to achieve.

Finally, a lot of experimental work is underway: people are actually building systems. Some of these
systems are just prototypes [Bancilhon et al. 88], [Nixon, et al. 87], [Banerjee et al. 87], [Skarra et al. 86],
[Fishman et al. 87], [Carey et al. 86], but some are commercial products, [Atwood 85], [Maier, et al. 84],
[Caruso and Sciore 87], [G-Base 88]. The interest in object-oriented databases seems to be driven by the
needs of design support systems (e.g., CAD, CASE, Office Information Systems). These applications require
databases that can handle very complex data, that can evolve gracefully, and that can provide the high-
performance dictated by interactive systems.

The implementation situation is analogous to relational database systems in the mid-seventies (though there
are more start-ups in the object-oriented case). For relational systems, even though there were some
disagreements on a few specific points, such as the form of the query language, or whether relations should
be sets or bags, these distinctions were in most cases superficial and there was a common underlying model.
People were mainly developing implementation technology. Today, we are simultaneously choosing the
specification of the system and producing the technology to support its implementation.

Thus, with respect to the specification of the system, we are taking a Darwinian approach: we hope that, out
of the set of experimental prototypes being built, a fit model will emerge. We also hope that viable
implementation technology for that model will evolve simultaneously.

Unfortunately, with the flurry of experimentation, we risk a system emerging as the system, not because it is
the fittest, but because it is the first one to provide a significant subset of the functionality demanded by the
market. It is a classical, and unfortunate, pattern of the computer field that an early product becomes the de
facto standard and never disappears. This pattern is true at least for languages and operating systems
(Fortran, Lisp, Cobol and SQL are good examples of such situations). Note however, that our goal here is not
to standardize languages, but to refine terminology.

It is important to agree now on a definition of an object-oriented database systems. As a first step towards
this goal, this paper suggests characteristics that such systems should possess. We expect that the paper will
be used as a straw man, and that others will either invalidate or confirm the points mentioned here. Note that
this paper is not a survey of the state of the art on OODBS technology and do not pretend to assess the
current status of the technology, it merely proposes a set of definitions.

We have separated the characteristics of object-oriented database systems into three categories: mandatory
(the ones that the system must satisfy to deserve the label), optional (the ones that can be added to make the
system better but which are not mandatory) and open (the places where the designer can select from a
number of equally acceptable solutions). In addition, there is some leeway how to best formulate each
characteristic (mandatory as well as optional).

The rest of this paper is organized as follows. Section 2 describes the mandatory features of an OODBS.
Section 3 describes its optional features and Section 4 presents the degrees of freedom left to the system
designers.

 2 Mandatory features: the Golden Rules

An object-oriented database system must satisfy two criteria: it should be a DBMS, and it should be an
object-oriented system, i.e., to the extent possible, it should be consistent with the current crop of object-
oriented programming languages. The first criterion translates into five features: persistence, secondary
storage management, concurrency, recovery and an ad hoc query facility. The second one translates into
eight features: complex objects, object identity, encapsulation, types or classes, inheritance, overriding
combined with late binding, extensibility and computational completeness.

 2.1 Complex objects

Thou shalt support complex objects

 Complex objects are built from simpler ones by applying constructors to them. The simplest objects are
objects such as integers, characters, byte strings of any length, booleans and floats (one might add other
atomic types). There are various complex object constructors: tuples, sets, bags, lists, and arrays are
examples. The minimal set of constructors that the system should have are set, list and tuple. Sets are
critical because they are a natural way of representing collections from the real world. Tuples are critical
because they are a natural way of representing properties of an entity. Of course, both sets and tuples are
important because they gained wide acceptance as object constructors through the relational model. Lists or
arrays are important because they capture order, which occurs in the real world, and they also arise in many
scientific applications, where people need matrices or time series data.

The object constructors must be orthogonal: any constructor should apply to any object. The constructors of
the relational model are not orthogonal, because the set construct can only be applied to tuples and the tuple
constructor can only be applied to atomic values. Other examples are non-first normal form relational
models in which the top level construct must always be a relation.

Note that supporting complex objects also requires that appropriate operators must be provided for dealing
with such objects (whatever their composition). That is, operations on a complex object must propagate
transitively to all its components. Examples include the retrieval or deletion of an entire complex object or
the production of a ``deep'' copy (in contrast to a ``shallow'' copy where components are not replicated, but
are instead referenced by the copy of the object root only). Additional operations on complex objects may be
defined, of course, by users of the system (see the extensibility rule below). However, this capability
requires some system provided provisions such as two distinguishable types of references (``is-part-of'' and
``general'').

 2.2 Object identity

Thou shalt support object identity

 Object identity has long existed in programming languages. The concept is more recent in databases, e.g.,
[Hall et al. 76], [Maier and Price 84], [Khoshafian and Copeland 86]. The idea is the following: in a model
with object identity, an object has an existence which is independent of its value. Thus two notions of object
equivalence exist: two objects can be identical (they are the same object) or they can be equal (they have the
same value). This has two implications: one is object sharing and the other one is object updates.

Object sharing: in an identity-based model, two objects can share a component. Thus, the pictorial
representation of a complex object is a graph, while it is limited to be a tree in a system without object
identity. Consider the following example: a Person has a name, an age and a set of children. Assume Peter
and Susan both have a 15-year-old child named John. In real life, two situations may arise: Susan and Peter
are parent of the same child or there are two children involved. In a system without identity, Peter is
represented by:

 (peter, 40, -(john, 15, -")")

 and Susan is represented by:

(susan, 41, -(john, 15, -")").

 Thus, there is no way of expressing whether Peter and Susan are the parents of the same child. In an
identity-based model, these two structures can share the common part (john, 15, {}) or not, thus capturing
either situations.

Object updates: assume that Peter and Susan are indeed parents of a child named John. In this case, all
updates to Susan's son will be applied to the object John and, consequently, also to Peter's son. In a value-
based system, both sub-objects must be updated separately. Object identity is also a powerful data
manipulation primitive that can be the basis of set, tuple and recursive complex object manipulation,
[Abiteboul and Kanellakis 89].

Supporting object identity implies offering operations such as object assignment, object copy (both deep and
shallow copy) and tests for object identity and object equality (both deep and shallow equality).

Of course, one can simulate object identity in a value-based system by introducing explicit object identifiers.
However, this approach places the burden on the user to insure the uniqueness of object identifiers and to
maintain referential integrity (and this burden can be significant for operations such as garbage collection).

Note that identity-based models are the norm in imperative programming languages: each object
manipulated in a program has an identity and can be updated. This identity either comes from the name of a
variable or from a physical location in memory. But the concept is quite new in pure relational systems,
where relations are value-based.

 2.3 Encapsulation

Thou shalt encapsulate thine objects

 The idea of encapsulation comes from (i) the need to cleanly distinguish between the specification and the
implementation of an operation and (ii) the need for modularity. Modularity is necessary to structure
complex applications designed and implemented by a team of programmers. It is also necessary as a tool for
protection and authorization.

There are two views of encapsulation: the programming language view (which is the original view since the
concept originated there) and the database adaptation of that view.

The idea of encapsulation in programming languages comes from abstract data types. In this view, an object
has an interface part and an implementation part. The interface part is the specification of the set of
operations that can be performed on the object. It is the only visible part of the object. The implementation
part has a data part and a procedural part.

The data part is the representation or state of the object and the procedure part describes, in some
programming language, the implementation of each operation.

The database translation of the principle is that an object encapsulates both program and data. In the
database world, it is not clear whether the structural part of the type is or is not part of the interface (this
depends on the system), while in the programming language world, the data structure is clearly part of the
implementation and not of the interface.

Consider, for instance, an Employee. In a relational system, an employee is represented by some tuple. It is
queried using a relational language and, later, an application programmer writes programs to update this
record such as to raise an Employee's salary or to fire an Employee. These are generally either written in a
imperative programming language with embedded DML statements or in a fourth generation language and
are stored in a traditional file system and not in the database. Thus, in this approach, there is a sharp
distinction between program and data, and between the query language (for ad hoc queries) and the
programming language (for application programs).

In an object-oriented system, we define the Employee as an object that has a data part (probably very similar
to the record that was defined for the relational system) and an operation part, which consists of the raise and
fire operations and other operations to access the Employee data. When storing a set of Employees, both the
data and the operations are stored in the database.

Thus, there is a single model for data and operations, and information can be hidden. No operations, outside
those specified in the interface, can be performed. This restriction holds for both update and retrieval
operations.

Encapsulation provides a form of ``logical data independence'': we can change the implementation of a type
without changing any of the programs using that type. Thus, the application programs are protected from
implementation changes in the lower layers of the system.

We believe that proper encapsulation is obtained when only the operations are visible and the data and the
implementation of the operations are hidden in the objects.

However, there are cases where encapsulation is not needed, and the use of the system can be significantly
simplified if the system allows encapsulation to be be violated under certain conditions. For example, with
ad-hoc queries the need for encapsulation is reduced since issues such as maintainability are not important.
Thus, an encapsulation mechanism must be provided by an OODBS, but there appear to be cases where its
enforcement is not appropriate.

2.4 Types and Classes

Thou shalt support types or classes

 This issue is touchy: there are two main categories of object-oriented systems, those supporting the notion
of class and those supporting the notion of type. In the first category, are systems such as Smalltalk
[Goldberg and Robson 83], Gemstone [Maier, et al. 84], Vision [Caruso and Sciore 87], and more generally
all the systems of the Smalltalk family, Orion [Banerjee et al. 87], Flavors [Bobrow and Steifik 81], G-Base
[G-Base 88], Lore [Caseau 89] and more generally all the systems derived from Lisp. In the second
category, we find systems such as C++ [Stroustrup 86], Simula [Simula 67], Trellis/Owl [Schaffert, et al.
86], Vbase [Atwood 85] and O2[Bancilhon et al. 88].

A type, in an object-oriented system, summarizes the common features of a set of objects with the same
characteristics. It corresponds to the notion of an abstract data type. It has two parts: the interface and the
implementation (or implementations). Only the interface part is visible to the users of the type, the
implementation of the object is seen only by the type designer. The interface consists of a list of operations
together with their signatures (i.e., the type of the input parameters and the type of the result).

The type implementation consists of a data part and an operation part. In the data part, one describes the
internal structure of the object's data. Depending on the power of the system, the structure of this data part
can be more or less complex. The operation part consists of procedures which implement the operations of
the interface part.

In programming languages, types are tools to increase programmer productivity, by insuring program
correctness. By forcing the user to declare the types of the variables and expressions he/she manipulates, the
system reasons about the correctness of programs based on this typing information. If the type system is
designed carefully, the system can do the type checking at compile-time, otherwise some of it might have to
be deferred at compile time. Thus types are mainly used at compile time to check the correctness of the
programs. In general, in type-based systems, a type is not a first class citizen and has a special status and
cannot be modified at run-time.

The notion of class is different from that of type. Its specification is the same as that of a type, but it is more
of a run-time notion. It contains two aspects: an object factory and an object warehouse. The object factory
can be used to create new objects, by performing the operation new on the class, or by cloning some
prototype object representative of the class. The object warehouse means that attached to the class is its
extension, i.e., the set of objects that are instances of the class. The user can manipulate the warehouse by
applying operations on all elements of the class. Classes are not used for checking the correctness of a
program but rather to create and manipulate objects. In most systems that employ the class mechanism,
classes are first class

citizens and, as such, can be manipulated at run-time, i.e., updated or passed as parameters. In most cases,
while providing the system with increased flexibility and uniformity, this renders compile-time type
checking impossible.

Of course, there are strong similarities between classes and types, the names have been used with both
meanings and the differences can be subtle in some systems.

We do not feel that we should choose one of these two approaches and we consider the choice between the
two should be left to the designer of the system (see Section 4.3). We require, however, that the system
should offer some form of data structuring mechanism, be it classes or types. Thus the classical notion of
database schema will be replaced by that of a set of classes or a set of types.

We do not, however, feel that is necessary for the system to automatically maintain the extent of a type (i.e.,
the set of objects of a given type in the database) or, if the extent of a type is maintained, for the system to
make it accessible to the user. Consider, for example, the rectangle type, which can be used in many
databases by multiple users. It does not make sense to talk about the set of all rectangles maintained by the
system or to perform operations on them. We think it is more realistic to ask each user to maintain and
manipulate its own set of rectangles. On the other hand, in the case of a type such as employee, it might be
nice for the system to automatically maintain the employee extent.

 2.5 Class or Type Hierarchies

Thine classes or types shalt inherit from their ancestors

 Inheritance has two advantages: it is a powerful modeling tool, because it gives a concise and precise
description of the world and it helps in factoring out shared specifications and implementations in
applications.

An example will help illustrate the interest in having the system provide an inheritance mechanism. Assume
that we have Employees and Students. Each Employee has a name, an age above 18 and a salary, he or she
can die, get married and be paid (how dull is the life of the Employee!). Each Student has an age, a name
and a set of grades. He or she can die, get married and have his or her GPA computed.

In a relational system, the data base designer defines a relation for Employee, a relation for Student, writes
the code for the die, marry and pay operations on the Employee relation, and writes the code for the die,
marry and GPA computation for the Student relation. Thus, the application programmer writes six programs.

In an object-oriented system, using the inheritance property, we recognize that Employees and Students are
Persons; thus, they have something in common (the fact of being a Person), and they also have something
specific.

We introduce a type Person, which has attributes name and age and we write the operations die and marry for
this type. Then, we declare that Employees are special types of Persons, who inherit attributes and
operations, and have a special attribute salary and a special operation pay. Similarly, we declare that a
Student is a special kind of Person, with a specific set-of-grades attribute and a special operation GPA
computation. In this case, we have a better structured and more concise description of the schema (we
factored out specification) and we have only written four programs (we factored out implementation).
Inheritance helps code reusability, because every program is at the level at which the largest number of
objects can share it.

There are at least four types of inheritance: substitution inheritance, inclusion inheritance, constraint
inheritance and specialization inheritance.

In substitution inheritance, we say that a type t inherits from a type t', if we can perform more operations on
objects of type t than on object of type t'. Thus, any place where we can have an object of type t', we can
substitute for it an object of type t. This kind of inheritance is based on behavior and not on values.

Inclusion inheritance corresponds to the notion of classification. It states that t is subtype of t', if every object
of type t is also an object of type t'. This type of inheritance is based on structure and not on operations. An
example is a square type with methods get, set(size) and filled-square, with methods get, set(size), and
fill(color).

Constraint inheritance is a subcase of inclusion inheritance. A type t is a subtype of a type t', if it consists of
all objects of type t which satisfy a given constraint. An example of such a inheritance is that teenager is a
subclass of person: teenagers don't have any more fields or operations than persons but they obey more
specific constraints (their age is restricted to be between 13 and 19).

With specialization inheritance, a type t is a subtype of a type t', if objects of type t are objects of type t which
contains more specific information. Examples of such are persons and employees where the information on
employees is that of persons together with some extra fields.

Various degrees of these four types of inheritance are provided by existing systems and prototypes, and we
do not prescribe a specific style of inheritance.

 2.6 Overriding, overloading and late binding

Thou shalt not bind prematurely

 In contrast to the previous example, there are cases where one wants to have the same name used for
different operations. Consider, for example, the display operation: it takes an object as input and displays it
on the screen. Depending on the type of the object, we want to use different display mechanisms. If the
object is a picture, we want it to appear on the screen. If the object is a person, we want some form of a tuple
printed. Finally, if the object is a graph, we will want its graphical representation. Consider now the
problem of displaying a set, the type of whose members is unknown at compile time.

In an application using a conventional system, we have three operations: display-person, display-bitmap and
display-graph. The programmer will test the type of each object in the set and use the corresponding display
operation. This forces the programmer, to be aware of all the possible types of the objects in the set, to be
aware of the associated display operation, and to use it accordingly.

 for x in X do
begin
case of type(x)
 person: display(x);
 bitmap: display-bitmap(x);
 graph: display-graph(x);
 end
 end

 In an object-oriented system, we define the display operation at the object type level (the most general type
in the system). Thus, display has a single name and can be used indifferently on graphs, persons and
pictures. However, we redefine the implementation of the operation for each of the types according to the
type (this redefinition is called overriding). This results in a single name (display) denoting three different
programs (this is called overloading). To display the set of elements, we simply apply the display operations
to each one of them, and let the system pick the appropriate implementation at run-time.

 for x in X do display(x)

 Here, we gain a different advantage: the type implementors still write the same number of programs. But
the application programmer does not have to worry about three different programs. In addition, the code is
simpler as there is no case statement on types. Finally, the code is more maintainable as when a new type is

introduced as new instance of the type are added, the display program will continue to work without
modification. (provided that we override the display method for that new type).

In order to provide this new functionality, the system cannot bind operation names to programs at compile
time. Therefore, operation names must be resolved (translated into program addresses) at run-time. This
delayed translation is called is called late binding.

Note that, even though late binding makes type checking more difficult (and in some cases impossible), it
does not preclude it completely.

 2.7 Computational completeness

Thou shalt be computationally complete

 From a programming language point of view, this property is obvious: it simply means that one can express
any computable function, using the DML of the database system. From a database point of view this is a
novelty, since SQL for instance is not complete.

We are not advocating here that designers of object-oriented database systems design new programming
languages: computational completeness can be introduced through a reasonable connection to existing
programming languages. Most systems indeed use an existing programming language [Banerjee et al. 87],
[Fishman et al. 87], [Atwood 85], [Bancilhon et al. 88]; see [Bancilhon and Maier 88] for a discussion of
this problem.

Note that this is different from being ``resource complete'', i.e., being able to access all resources of the
system (e.g. screen and remote communication) from within the language. Therefore, the system, even
though computationally complete might not be able to express a complete application. It is, however, more
powerful than a database system which only stores and retrieves data and performs simple computations on
atomic values.

 2.8 Extensibility

Thou shalt be extensible

 The database system comes with a set of predefined types. These types can be used at will by programmers
to write their applications. This set of type must be extensible in the following sense: there is a means to
define new types and there is no distinction in usage between system defined and user defined types. Of
course, there might be a strong difference in the way system and user defined types are supported by the
system, but this should be invisible to the application and to the application programmer. Recall that this
type definition includes the definition of operations on the types. Note that the encapsulation requirement
implies that there will be a mechanism for defining new types. This requirement strengthens that capability
by saying that newly created types must have the same status as existing ones.

However, we do not require that the collection of type constructors (tuples, sets, lists, etc.) be extensible.

2.9 Persistence

Thou shalt remember thy data

 This requirement is evident from a database point of view, but a novelty from a programming language
point of view, [Atkinson et al. 83]. Persistence is the ability of the programmer to have her/his data survive
the execution of a process, in order to eventually reuse it in another process. Persistence should be
orthogonal, i.e., each object, independent of its type, is allowed to become persistent as such (i.e., without
explicit translation). It should also be implicit: the user should not have to explicitly move or copy data to
make it persistent.

 2.10 Secondary storage management

Thou shalt manage very large databases

 Secondary storage management is a classical feature of database management systems. It is usually
supported through a set of mechanisms. These include index management, data clustering, data buffering,
access path selection and query optimization.

None of these is visible to the user: they are simply performance features. However, they are so critical in
terms of performance that their absence will keep the system from performing some tasks (simply because
they take too much time). The important point is that they be invisible. The application programmer should
not have to write code to maintain indices, to allocate disk storage, or to move data between disk and main
memory. Thus, there should be a clear independence between the logical and the physical level of the
system.

 2.11 Concurrency

Thou shalt accept concurrent users

 With respect to the management of multiple users concurrently interacting with the system, the system
should offer the same level of service as current database systems provide. It should therefore insure
harmonious coexistence among users working simultaneously on the database. The system should therefore
support the standard notion of atomicity of a sequence of operations and of controlled sharing. Serializability
of operations should at least be offered, although less strict alternatives may be offerered.

 2.12 Recovery

Thou shalt recover from hardware and software failures

 Here again, the system should provide the same level of service as current database systems. Therefore, in
case of hardware or software failures, the system should recover, i.e., bring itself back to some coherent state
of the data. Hardware failures include both processor and disk failures.

 2.13 Ad Hoc Query Facility

Thou shalt have a simple way of querying data

The main problem here is to provide the functionality of an ad hoc query language. We do not require that it
be done in the form of a query language but just that the service be provided. For instance, a graphical
browser could be sufficient to fulfill this functionality. The service consists of allowing the user to ask
simple queries to the database simply. The obvious yardstick is of course relational systems, thus the test is to
take a number of representative relational queries and to check whether they can be stated with the same
amount of work. Note that this facility could be supported by the data manipulation language or a subset of
it.

We believe that a query facility should satisfy the following three criteria: (i) It should be high level, i.e., one
should be able to express (in a few words or in a few mouse clicks) non-trivial queries concisely. This
implies that it should be reasonably declarative, i.e., it should emphasize the what and not the how. (ii) It
should be efficient. That is, the formulation of the queries should lend itself to some form of query
optimization. (iii) It should be application independent, i.e., it should work on any possible database. This
last requirements eliminates specific querying facilities which are application dependent, or require writing
additional operations on each user-defined type.

 2.14 Summary

 This concludes the list of mandatory features and the distinction between traditional and object-oriented
database systems should be clear. Relational database systems do not satisfy rules 1 through 8. CODASYL
database systems partially satisfy rules 1 and 2. Some people have argued that object-oriented database
systems are nothing more than CODASYL systems. It should be noted that (i) CODASYL systems do not
completely satisfy these two rules (the object constructors are not orthogonal and object identity is not
treated uniformly since relationships are restricted to be 1:n), and (ii) they do not satisfy rules 3, 5, 6, 8 and
13.

There is a collection of features for which the authors have not reached consensus on whether they should be
required or optional. These features are:

 o view definition and derived data;
 o database administration utilities;
 o integrity constraints;
 o schema evolution facility.

 3 Optional features: the goodies

We put under this heading things which clearly improve the system, but which are not mandatory to make it
an object-oriented database system.

Some of these features are of an object oriented nature (e.g. multiple inheritance). They are included in this
category because, even though they make the system more object-oriented, they do not belong in the core
requirements.

Other features are simply database features (e.g. design transaction management). These characteristics
usually improve the functionality of a data base system, but they are not in the core requirement of database
systems and they are unrelated to the object oriented aspect. In fact most of them are targeted at serving
``new'' applications (CAD/CAM, CASE, Office automation, etc.) and are more application oriented than
technology oriented. Because many object-oriented database systems are currently aiming at these new
applications, there has been some confusion between these features and the object-oriented nature of the
system.

 3.1 Multiple inheritance

Whether the system provides multiple inheritance or not is an option. Since agreement on multiple
inheritance in the object-oriented community has not yet been reached, we consider providing it to be
optional. Note that once one decides to support multiple inheritance, there are many possible solutions for
dealing with the problem of conflict resolution.

 3.2 Type checking and type inferencing

The degree of type checking that the system will perform at compile time is left open but the more the better.
The optimal situation is the one where a program which was accepted by the compiler cannot produce any
run-time type errors. The amount of type inferencing is also left open to the system designer: the more the
better, the ideal situation is the one in which only the base types have to be declared and the system infers the
temporary types.

 3.3 Distribution

It should be clear that this characteristic is orthogonal to the object-oriented nature of the system. Thus, the
database system can be distributed or not.

3.4 Design transactions

In most new applications, the transaction model of classical business oriented database system is not
satisfactory: transactions tend to be very long and the usual serializability criterion is not adequate. Thus,
many OODBSs support design transactions (long transactions or nested transactions).

 3.5 Versions

Most of the new applications (CAD/CAM and CASE) involve a design activity and require some form of
versioning. Thus, many OODBSs support versions. Once again, providing a versioning mechanism this is
not part of the core requirements for the system.

 4 Open choices

Every system which satisfies rules 1 through 13 deserves the OODBS label. When designing such a system,
there are still a lot of design choices to be made. These are the degrees of freedom for the OODBS
implementors. These characteristics differ from the mandatory ones in the sense that no consensus has yet
been reached by the scientific community concerning them. They also differ from the optional features in that
we do not know which of the alternatives are more or less object-oriented.

 4.1 Programming paradigm

We see no reason why we should impose one programming paradigm more than another: the logic
programming style [Bancilhon 86], [Zaniolo 86], the functional programming style [Albano et al. 1986],
[Banerjee et al. 87], or the imperative programming style [Stroustrup 86], [Eiffel 87], [Atwood 85] could all
be chosen as programming paradigms. Another solution is that the system be independent of the
programming style and support multiple programming paradigms [Skarra et al. 86], [Bancilhon et al. 88].

Of course, the choice of the syntax is also free and people will argue forever whether one should write ``john
hire'' or ``john.hire'' or ``hire john'' or ``hire(john)''.

 4.2 Representation system

The representation system is defined by the set of atomic types and the set of constructors. Even though we
gave a minimal set of atomic types and constructors (elementary types from programming languages, and
set, tuple and list constructors) available for describing the representation of objects, can be extended in
many different ways.

4.3 Type system

There is also freedom with respect to the type formers. The only type formation facility we require is
encapsulation. There can be other type formers such as generic types or type generator (such as set[T], where
T can be an arbitrary type), restriction, union and arrow (functions).

Another option is whether the type system is second order. Finally, the type system for variables might be
richer than the type system for objects.

 4.4 Uniformity

There is a heated debate on the degree of uniformity one should expect of such systems: is a type an object?
is a method an object? or should these three notions be treated differently? We can view this problem at
three different levels: the implementation level, the programming language level and the interface level.

At the implementation level, one must decide whether type information should be stored as objects, or
whether an ad hoc system must be implemented. This is the same issue relational database systems designers
have to face when they must decide whether to store the schema as a table or in some ad hoc fashion. The
decision should be made based on performance and ease of implementation grounds. Whatever, decision is
made is, however, independent from the one taken at the next level up.

At the programming language level, the question is the following: are types first class entities in the
semantics of the language. Most of the debate is concentrated on this question. There are probably different
styles of uniformity (syntactical or semantical). Full uniformity at this level is also inconsistent with static
type checking.

Finally, at the interface level, another independent decision must be made. One might want to present the
user with a uniform view of types, objects, and methods, even if in the semantics of the programming
language, these are notions of a different nature. Conversely, one could present them as different entities,
even though the programming language views them as the same thing. That decision must be made based on
human factor criteria.

 5 Conclusions

Several other authors, [Kim 88] and [Dittrich 1986] argue that an OODBS is a DBMS with an underlying
object-oriented data model. If one takes the notion of a data model in a broad sense that especially includes
the additional aspects going beyond record-orientation, this view is certainly in accordance with our
approach. [Dittrich 1986] and [Dittrich 1988] introduce a classification of object-oriented data models (and,
consequently, of OODBS): if it supports complex objects, a model is called structurally object-oriented; if
extensibility is provided, is it called behaviorally object-oriented ; a fully object-oriented model has to offer
both features. This definition also requires persistence, disk management, concurrency, and recovery; it at
least implicitly assumes most of the other features (where applicable, according to the various classes); in
total, it is thus slightly more liberal than our approach. However, as most current systems and prototypes do
not fulfill all requirements mandated by our definition anyway, this classification provides a useful
framework to compare both existing and ongoing work.

We have proposed a collection of defining characteristics for an object-oriented database system. To the best
of our knowledge, the golden rules presented in this paper are currently the most detailed definition of an
object-oriented database system. The choice of the characteristics and our interpretation of them devolves
from out experience in specifying and implementing the current round of systems. Further experience with
the design, implementation, and formalization of object-oriented databases will undoubtedly modify and
refine our stance (in other words, don't be surprised if you hear one of the authors lambasting the current
definition in the future). Our goal is only to put forth a concrete proposal to be debated, critiqued and
analyzed by the scientific community. Thus, our last rule is:

 Thou shalt question the golden rules

 6 Acknowledgements

We wish to thank Philippe Bridon, Gilbert Harrus, Paris Kanellakis, Philippe Richard, and Fernando Velez
for suggestions and comments on earlier drafts of the paper. David Maier's work was partially supported by
NSF award IST 83-51730, co-sponsored by Tektronix Foundation, Intel, Digital Equipment, Servio Logic,
Mentor Graphics and Xerox.

 References

[Abiteboul and Kanellakis 89] S. Abiteboul and P. Kanellakis, ``Object identity as a query language
primitive'', Proceedings of the 1989 ACM SIGMOD, Portland, Oregon, June 89 [Albano et al. 1986]
A. Albano, G. Gheli, G. Occhiuto and R. Orsini, ``Galileo: a strongly typed interactive conceptual
language'', ACM TODS, Vol 10, No. 2, June 1985.

[Atkinson et al. 83] M. Atkinson, P.J. Bayley, K. Chilsom, W. Cockshott and R. Morrison, ``An
approach to persistent programming'', Computer Journal, 26(4), 1983, pp 360-365.

[Atwood 85] T. Atwood, ``An object-oriented DBMS for design support applications'', Ontologic Inc.
Report. [Bancilhon 86] F. Bancilhon, ``A logic programming object oriented cocktail'', ACM
SIGMOD Record, 15:3, pp. 11-21, 1986.

[Bancilhon and Maier 88] F. Bancilhon and D. Maier, ``Multilanguage object-oriented systems: new
answer to old database problems'', in Future Generation Computer II, K. Fuchi and L. Kott editors,
North-Holland, 1988. [Bancilhon et al. 88] F. Bancilhon, G. Barbedette, V. Benzaken, C. Delobel, S.
Gamerman, C. Lecluse, P. Pfeffer, P. Richard et F. Velez, ``The design and implementation of O2, an
object-oriented database system'', Proceedings of the ooDBS II Workshop, Bad Munster, FRG,
September 1988.

[Banerjee et al. 87] J. Banerjee, H.T. Chou, J. Garza, W. Kim, D. Woelk, N. Ballou and H.J. Kim,
``Data model issues for object-oriented applications'', ACM TOIS, January 1987.

[G-Base 88] ``G-Base version 3, Introductory guide'', Graphael, 1988. [Bobrow and Steifik 81] D. Bobrow
and M. Steifik, `` The Loops Manual'', Technical Report LB-VLSI-81-13, Knowledge Systems Area,
Xerox Palo Alto Research Center, 1981.

[Carey et al. 86] M. Carey, D. DeWitt, J.E. Richardson and E.J. Shekita, ``Object and file management
in the EXODUS Extensible Database System'', Proceedings of the 12th VLDB, pp 91-10, August 1986.

[Carey et al. 88] M. Carey, D. DeWitt and S. Vandenberg, ``A Data Model and Query Language for
EXODUS'', Proceedings of the 1988 ACM SIGMOD Conference, Chicago, June 1988. [Caruso and
Sciore 87] ``The VISION Object-Oriented Database Management System'', Proceedings of the
Workshop on Database Programming Languages, Roscoff, France, September 1987

[Caseau 89] ``A model for a reflective object-oriented language'', Sigplan Notices, Special issue on
Concurrent Object-Oriented Programming, March 1989.

[Codd 70] E. F. Codd, ``A relational model for large shared data banks'', Communication of the ACM,
Volume 13, Number 6, (June 1970), pp 377-387. [Dittrich 1986] K.R. Dittrich, ``Object-Oriented
Database System : The Notions and the issues'', in : Dittrich, K.R. and Dayal, U. (eds):
Proceedings of the 1986 International Workshop on Object-Oriented Database Systems, IEEE
Computer Science Press

[Dittrich 1988] K. R. Dittrich, ``Preface'', In : Dittrich, K.R. (ed): Advances in Object-Oriented
Database Systems, Lecture Notes in Computer Science, Vol, 334, Springer-Verlag, 1988

[Eiffel 87] ``Eiffel user's manual'', Interactive Software Engineering Inc., TR-EI-5/UM, 1987.
[Fishman et al. 87] D. Fishman et al, ``Iris: an object-oriented database management system'', ACM
TOIS 5:1, pp 48-69, January 86.

[Hall et al. 76] P. Hall, J. Owlett, S. Todd, ``Relations and Entities'', in ``Modeling in Data Base
Management Systems'', G.M. Nijssen (ed.), pp 201-220, North-Holland, 1976.

[Goldberg and Robson 83] A. Goldberg and D. Robson, ``Smalltalk-80: the language and its
implementation'', Addison-Wesley, 1983. [Kim 88] W. Kim, ``A foundation for object-oriented databases'',
MCC Technical Report, 1988.

[Khoshafian and Copeland 86] S. Khoshafian and G. Copeland, ``Object identity'', Proceedings of the
1st ACM OOPSLA conference, Portland, Oregon, September 1986

[Lecluse and Richard 89] C. Lecluse and P. Richard, ``The O2Database Programming Languages'',
Proceedings of the 15th VLDB Conference, Amsterdam, August 1989. [Maier and Price 84] D. Maier
and D. Price, ``Data model requirements for engineering applications'', Proceedings of the First
International Workshop on Expert Database Systems, IEEE, 1984, pp 759-765

[Maier 89] D. Maier, ``Why isn't there an object-oriented data model?'' Proceedings IFIP 11th World
Computer Conference, San Francisco, CA, August-September 1989.

[Maier, et al. 84] D. Maier, J. Stein, A. Otis, A. Purdy, ``Development of an object-oriented DBMS''
Report CS/E-86-005, Oregon Graduate Center, April 86 [Nixon, et al. 87] B. Nixon, L. Chung, D.
Lauzon, A. Borgida, J. Mylopoulos and M. Stanley, ``Design of a compiler for a semantic data
model'', Technical note CSRI-44, University of Toronto, May 1987.

[Simula 67] ``Simula 67 Reference Manual''

[Schaffert, et al. 86] C. Schaffert, T. Cooper, B. Bullis, M. Kilian and C. Wilpolt, ``An introduction to
Trellis/Owl'', Proceedings of the 1st OOPSLA Conference, Portland, Oregon, September 1986 [Skarra
et al. 86] A. Skarra, S. Zdonik and S. Reiss, ``An object server for an object oriented database system,''
Proceedings of the 1986 International Workshop on Object Oriented Database System,
Computer Society Press, IEEE, pp. 196-204, 1986

[Stroustrup 86] B. Stroustrup, ``The C++ programming language'', Addison-Wesley, 1986.

[Van Emdem and Kowalski 76] M. Van Emdem and R. Kowalski, ``The semantics of predicate logic
as a programming language'', JACM, Vol 23, No. 4, pp. 733-742, October 1976, [Zaniolo 86] C.
Zaniolo, ``Object-oriented programming in Prolog '', Proceedings of the first workshop on Expert
Database Systems, 1985.

