An Experimental evaluation of sSNCL compared to NCL

*
Jamile Santos
Instituto Federal da Bahia
Rua Emidio Santos, s/n,
Barbalho,
Salvador, Bahia, Brazil

ABSTRACT

Nested Context Language (NCL) is the official declarative
language for the Brazilian digital Television. It is widely
used to create multimedia documents and interactive ap-
plications for digital Television. The NCL is known for its
space-time synchronization between media objects, adapt-
ability, and support for multiple devices. Furthermore, it is
based on XML and NCM model (Nested Context Model).
Although NCL is considered simple, the similarity to XML
gives it more verbosity and it has been the topic of debate
whether or not it is easy to use and understand. In order
to simplify this language, reduce verbosity and ease the use
sNCL was created. sNCL is a domain specific language cen-
tralized on decrease the verbosity in NCL documents. More-
over, its goal is to provide better use and productivity for
developers. The objective of this work is to run a controlled
experiment and through statistical analysis to evaluate if the
sNCL is easier to learn, less verbose and simpler compared
to NCL.

Keywords

NCL, sNCL, digital television, experimental evaluation, us-
ability, verbosity

1. INTRODUCTION

The digital television (DTV) in Brazil represents a im-
portant advance on telecomunication sector. It possibilites
interactivity between users and application, in the commu-
nication process. It provides high quality sound and image.
Moreover, it proposes new services not existing in conven-
tional analog television.

*Student from the course of Analysis and Systems Develop-
ment (ADS).

TPL.D. in Computer Science, Professor and Researcher from
the course of Analysis and Systems Development.

iPh.D. in Computer Science, Professor, Researcher and Ad-
visor from the course of Analysis and Systems Development.

Manoel C. M. NetoT

Instituto Federal da Bahia

Rua Emidio Santos, s/n,
Barbalho,

S { Salvador, Bahia, Brazil

jamile.ssnts@gmail.com manoelnetom@itba.edu.br

Renato NovaisEt
Instituto Federal da Bahia
Rua Emidio Santos, s/n,
Barbalho,
Salvador, Bahia, Brazil
renato@ifba.edu.br

Some of the applications that provides these services and
interactivity are developed in specific domain languages (DSL).
DSL are based on the relevant concepts and characteristics
of a given domain. Thus, they can provide an adapted no-
tation to the family of applications of this domain and facil-
itate their creations. Therefore, DSLs are defined as small
language, usually declarative, that describe domain appli-
cations [19, 20]. It makes them a simple type of language
to use since much of the knowledge about the domain is
implicit in its structure. A widely used DSL language for
digital TV applications is NCL. Also, for the applications to
work in the digital televisions a middleware to mediate the
communication between hardware and software is necessary.
The middleware used for the Brazilian television system is
Ginga.

Ginga is an open source middleware being a intermedi-
ate layer that provides the interactions between the soft-
ware applications and hardware. Moreover, it allows the
development of interactive NCL applications for DTV in-
dependently of the hardware platform, and provides cate-
gories, Ginga-NCL and GingadJ, but in this paper we focus
on Ginga-NCL.

NCL is designed to facilitate the modeling and authoring
of Digital TV applications by content producers. It is the
standard language of the Brazilian Digital Terrestrial TV
System (SBTVD-T) [10] and ITU-T Recommendation H.761
[12]. NCL is a high level declarative and domain-specific lan-
guage for specific based on XML and Nested Context Model
(NCM) used to develop digital television applications devel-
opment [8]. As an XML application, besides to other factors
explored in this article, NCL introduces a high verbosity
that is not quite useful. This verbosity offers the false idea
that NCL is not as powerful as imperative languages such
as Java, C, or Lua. As a result, it does not attract as many
developers as the more traditional languages. The new DSL
alms to be an easier language to use. To achieve this object,
the implementation of sNCL was based on an analysis of the
usability factors of NCL combined to the use of CDN. The
results obtained from this analysis have a direct influence on
the design decisions of sNCL.

This work presents an experimental evaluation about sNCL
addressing the main aspects of the new DSL language com-
paring to NCL. The experiment is explained in details in
section 3.

2. THEORETICAL FRAMEWORK

This paper focuses on the experimental evaluation of SNCL
compared to NCL. Section 2 discusses about the Brazilian

Digital Television System, Ginga middleware and its archi-
tecture, NCL, and sNCL language. Section 3 presents the
related work. Section 4 explains in details about the ex-
perimental evaluation, such as study hypothesis, the exper-
imental object, participant’s characterization, task design,
experimental procedures and pilot study. Section 5 presents
the results of the experiment along with the statistical tests.
Section 6 discuss about the lessons learned from the experi-
ment covering aspects such as productivity, correctness and
verbosity. Section 7 validates the evaluation, and finally
section 8 presents the conclusions about the study and its
impacts.

2.1 Brazilian Digital Television System

Television in Brazil has an important role for Brazilian
nation, being a source of information and entertainment
for many people. According to [1] the television is already
present in 94.8% of households. This fact indicates that the
TV has a great importance for the Brazilian population.

The advent of digital television in Brazil marked a new
phase of technological evolution that has generated major
changes in various aspects of society. Digital TV has brought
interactivity, advances in access to information, digital in-
clusion, improved quality of sound and image transmission.
This technological advance allows the transmission of images
in high definition and audio, providing a similar quality to
that found in a movie theatre. But these improvements in
the TV are not the only benefits that the digital television
has to offer.

The major difference is the connectivity with the inter-
net, a fact that introduces new uses for this device, which
not only to watch audiovisual content. A range of interac-
tive services became part of the functionalities of television
associated with the internet, such as access to videos on
demand, multiplayer games, government services, banking
services, email accounts, access to shopping networks, social
networks [5].

The transition from analogue to digital TV was projected
by the Brazilian government since the beginning of the 2000s
when it was already planned to suspend analogue signal in
2016 [5].

The first official broadcast of Brazilian digital Television
took place in 2007, and was created based on ISDB-T (In-
tegrated Services Digital Broadcasting Terrestrial). The
ISDB-TB is an adaptation of the ISDB-T with added tech-
nologies developed by researchers from Brazilian universities
[10].

The SBTVD (Brazilian Digital TV System) provides high-
quality images and sounds without major interference com-
pared to the analogical system. Besides theses improvements
on the Brazilian TV System, the impact of digital TV is
even greater because it allows flexibility and interactivity.
This flexibility is related to the ability to expand its func-
tions through applications that are built following a refer-
ence standard [10]. These applications, which are computer
programs, should be independent and able to run in any
hardware platform and operating system, hence to provide
that, a middleware is needed. The middleware is a compo-
nent that regulates the relationship between content produc-
tion and manufacture of receivers, which makes it extremely
important [10].

For the implementation of the DTV it was necessary to
develop a middleware that would be able to encode the sig-

nals. Ginga is the middleware for the Brazilian digital sys-
tem which was entirely developed in Brazil. It is not similar
as others middlewares for terrestrial digital TV, the stan-
dard middleware of the Brazilian DTV (ISDTV-T) has its
own environment inspired by XML application language.

As reported by [9], Ginga supports both declarative and
procedural applications. The declarative applications should
be based on a declarative language, that is, a language that
emphasizes the declarative description of the problem [3],
such as XML, HTML and NCL. On the other hand, the
procedural contents is not based on declarative language,
for instance Java.

The application environment is categorized in procedu-
ral and declarative as well. The declarative environment is
called Ginga-NCL, and the procedural is Ginga-J.

Ginga Middleware Specification

Ginga-J

Ginga-CC

Ginga-NCL

—

Figure 1: Ginga Architecture

The Ginga architecture is modular as shown in figure 2.1,
and it can be applied to other television systems, such as
satellite or cable [3]. Although Ginga is divided into two
categories, the DTV (Digital TV) applications can be a hy-
brid, supporting both procedural and declarative. As stated
by [9], Ginga-NCL is a logical subsystem of the Ginga Sys-
tem that runs NCL applications, and Ginga-J.

The main component of Ginga-NCL is the declarative con-
tent decoding engine [9]. Unlike Ginga-NCL, the important
component on the Ginga-J is the engine execution of the
procedural application formed by a JVM (Java Virtual Ma-
chine).

The Bridge component on the architecture is a way of
communication between Ginga-J and Ginga-NCL. The Ginga-
CC (Common Core) is composed of decoders and common
procedures of content to get content transported in MPEG-2
transport streams (T'S) and through a return channel [3].

2.2 NCL - The Nested Context Language

NCL is a declarative language for authoring of hypermedia
documents based on NCL (Nested Context Model) [6]. The
Nested Context Language was created by researchers from
Pontifical Catholic University of Rio de Janeiro. The NCL
language model is intended not only for declarative support
for user interaction but for spatial and timing synchroniza-
tion in its most general form, treating user interaction as a

2)

3

~

particular case.

NCL is a declarative domain specific language based on
NCM model and XML language. It is the DSL standard
language for the digital Brazilian system TV [2]. Although
it is based on XML, NCL has a severe separation between
content and structure [9]. An NCL document just defines
the structure and relation of media objects, time and space.

The basic NCL structure is the following elements: <ncl>,
<head>, and <body>. The <ncl> tag is the parent of the
head and body elements.

<?xml version="1.0" encoding="ISO—-8859—-1"7>
<!— Generated by NCL Eclipse —>
<ncl id="new_ncl_file” xmlns="http://www.
ncl.org.br/NCL3.0/ EDTVProfile”>
<head>
<regionBase>
<region width="1060"
="rgtv”>
<region left="448" width="1024" top
="156” id="rgvideo”>
</region>
</region>
</regionBase>

height="1029" id

<descriptorBase>
<descriptor id="dvideo”
rgvideo”>
</descriptor>
</descriptorBase>

region="

</head>

<body>
<port id="pbegin” component="video” />
<media descriptor="dvideo” src="media/
video .mpeg” id="video”>
</media>
</body>
</ncl>

Listing 1: Example of NCL code

In the <head> element are the elements related to the
code reuse, that are defined as bases. For instance: <de-
scriptorBase> and <descriptor>. These structures allows
the code reuse of its children elements [9].

The <body> element has the structure that specifies the
kind of content application, the medias and the relation-
ship between them [13]. Its children elements are: <port>,
<attribute>, <media>, <context>, <switch> and <link>
[9]. The media element is responsible for define the type of
content and its the location.

Some of these elements are responsible for the presenta-
tion, and other for the relationship between medias. For in-
stance <region>, <transition>, <descriptor>, <context>
and <media> is in charge of media presentation.

The <connector> and <link> relates the medias, they
connect the different types of medias. In NCL language, the
<link> and <connector> elements are responsible for syn-
chronizing the medias. Hence, they are common elements
in an NCL document. The <connector> provides reusable
models for the causal relation between elements and its func-
tions. These functions follow a conditional and actional
model, which means that the conditions are established to
be a model.

Other elements that are useful for reuse purposes are three

1

>

types that precede the <media> element: <region>, <de-
scriptor>, and <transition>. The <region> element defines
the screen area where the media will be shown. The <de-
scriptor> defines a model for the transition effect, there is
a chain of elements, and it is a referred region by many de-
scriptors, which are referred my many medias. However, the
first two elements are in the body while the media is on doc-
ument’s body. this increases the error probability because
the media can refer to a not declared descriptor.

The developer also can declare only the <media> ele-
ment, defining all properties within it. However it increases
its diffusion, and the application loses the reuse properties.
The segregation between region and descriptor increases the
reuse although it creates a hidden sequence of dependen-
cies. For instance, the <region> may be referred by many
<descriptor> and the descriptors by many media, which de-
creases the visibility because it is required the utilization of
two or more elements to become a visible media.

There are many studies about the NCL verbosity, and
how to reduce it. Between these studies, there are two ap-
proaches based on template, TAL (template Authoring Lan-
guage) and Luar. These works propose a language for devel-
opment of multimedia applications, and divide its authoring
application into two steps, the templates authoring, which
is an incomplete document that describes the application
defining the used media’s objects.

2.3 Simpler NCL

sNCL (simpler NCL) is a domain-specific language (DSL),
whose purpose is to solve or minimize problems that NCL
has, introducing a simpler way to develop multimedia ap-
plications for the Ginga-NCL middleware [9] and to provide
to professionals, especially programmers, a new approach,
which is not based on XML. It aims to be less verbose, more
compact and it does not require a lot of writing from the
author to express an idea. The syntax is inspired in Lua,
which is used as script language and extension for NCL,
such as NCLua, that allows using Lua code as objects in
NCL application [13].

The similarity between sNCL with Lua language, as men-
tioned, also it is used for digital TV application, provides
a familiarity for developers of this new language [9]. The
sNCL authors state that for not being based on XML the
verbosity decreases, and for those developers who is familiar
with imperative languages the understanding is easier than
NCL.

The NCL elements are used on sSNCL, such as media, area,
context and its attributes like the reserved words, that de-
termine the kind of the data, as int, float [2]. The figure 2,
shows the declaration in sNCL.

region beginReg
width = ”7100%”

height = 7100%”
zIndex = 710”7
5 end

media photol
right = 710%”

source = "media/foto01”
area aphotol

begin = ”5s8”

end = 710s”
end

3 end

Listing 2: Example of NCL code

It is an important highlight that the applications written
in sNCL are compiled as NCL, and then the NCL. document
is run. There is no a specific player for sSNCL yet, and it
does not plan substitute NCL, however, it aims to work as
an intermediate tool.

In NCL, the elements <head> and <body> provides reuse
of elements however it introduces a problem of hidden de-
pendencies both on presentation area and relationship part.
In sNCL, these elements aforementioned are removed as well
the <descriptorBase>, <connectorBase> and its children.

In the analyzed applications, descriptor elements mostly
are used to call a media and its region. Hence, with its
removal, the properties become defined within medias.

The <region> element is kept because it has many uses.
Medias can refer to the same region, but there is no need for
the declaration of its parent <regionBase>. Besides that,
there is a <importBase> that may be used to import docu-
ments with .ncl and .sncl extensions.

In the relationship area, the <connector> element was
discarded from the language. Once the separation of ele-
ments relation affects the Viscosity Dimensions, Visibility
and Propensity to errors, as seen earlier. Only the link ele-
ment is kept allowing the author to define the relationship
between medias.

The sNCL syntax resembles a imperative language, where
the elements become tokens (reserved words) of the lan-
guage. Because of that, once an element is declared, it
is used as reserved word followed by its attributes. The
<port> element has the id attribute and component. Fig-
ure 3 shows the syntax of the port element. The elements
follow a syntax standard, expect the <link> element. It is
easy to notice that the sSNCL structure differs from the NCL
elements. The <link> element loses its xconnector and id
attributes.

port Portld Component

Figure 2: sNCL of port element

Considering that, the first is used in NCL to specify which
<connector> the <link> is being used as relationship defi-
nition, and the second one is used to reuse purposes of the
element. However, no element in NCL can refer to <link>,
therefore the attribute id becomes a useless attribute. The
xconnector was removed because in SNCL there is no more
than one <connector> element to be referred.

The elements follow a syntax standard, expect the <link>
element. It is easy to notice that the sNCL structure differs
from the NCL elements. The <link> element loses its xcon-
nector and id attributes. Considering that, the first is used
in NCL to specify which <connector> the <link> is being
used as relationship definition, and the second one is used
to reuse purposes of the element. However, no element in
NCL can refer to <link>, therefore the attribute id becomes
a useless attribute. The xconnector was removed because in
sNCL there is no more than one <connector> element to be
referred.

Besides the reason aforementioned, the reason for removal
of <connector> the element is that for being a DSL, the do-

main knowledge is implicit in the language structure. When
the link element is declared, the sNCL compiler infers on
what is being a descriptor, therefore removing the need to
declare the connector.

The syntactic analysis of sSNCL document is done using
the LPeg (Lua Parsing Expression Grammar) library, that
allows the definition of rules and analyze the input document
as a syntactic tree for development of multimedia applica-
tions for the terrestrial Brazilian digital TV system. The
sNCL authors aim not only to reduce the final document ver-
bosity but also simplify the application development. The
development process of SNCL follows the development tech-
niques test oriented. For the learning process of sNCL, it is
recommended to start with simple examples and then incre-
ment adding new elements. Those who are not familiar with
XML language. Its imperative structure allows the user to
understand better the commands.

3. RELATED WORK

There are several papers that investigate specific domain
languages. Some of these articles perform empirical studies
about aspects of language, such as [4]. Some of these works
perform empirical studies about aspects of language, such
as [4], that presents an empirical research on the use of DSL
on an industry. Another example of empirical study is [11],
however, in this study, the authors focus on specific DSL
language, the NCL.

On the first study cited [4], the authors investigate some
aspects of DSL, such as usability, reliability, and learnability
through a survey with 18 users. The questionnaire focus on
to measure the success factors about DSL language.

This work is related to our study because it performs an
experiment with survey that investigates aspects like usabil-
ity and learnability of DSL. It gave us the base to create our
questionnaire.

Moreover, [11] is also an empirical study about NCL which
is specific type of DSL language, and its goal was to get us-
ability indicators of NCL from users. Qualitative and quan-
titative questions were made for 220 students from intro-
ductory courses about application development for digital
television. The focus of the courses was production of digi-
tal television content.

The students completed two forms, one referring to their
profile and another with questions related to the course. The
conclusions of this study show that for students with tech-
nical training in computing, NCL is effective for developing
applications for digital television, but presents some chal-
lenges related to usability that must be improved to become
an efficient language.

According to the study performed by [11], students found
that although it is a verbose language, NCL is not difficult
to learn. Hence, the authors suggest the creation of editing
tools for NCL, or creation of mechanisms in the language to
reduce verbosity.

This work is relevant to the present study because it ad-
dresses aspects such as verbosity and usability, just as our
experiment expects to measure.

4. EXPERIMENTAL EVALUATION

The main objective of this experiment is to evaluate quan-
titatively and qualitatively the verbosity, productivity and
learnability of the sNCL language compared to NCL. The

Table 1: STUDY HYPOTHESES
H | Description

H1 sNCL provides to the programmers a superior
productivity than NCL.

H2 | sNCL is less verbose than NCL.

H3 sNCL is easier to learn because it is simpler
than NCL.

goal is to analyze if the sNCL language offers advantages
with its use. The experiment is motivated by a need to un-
derstand the differences between NCL and sNCL in terms
aforementioned.

We performed an experiment using the evaluation tech-
niques based on [14] with both programming languages fol-
lowing a set of designed tasks that will be described through-
out the following sections. The goal is to investigate if the
sNCL meet its purpose as stated by [2, 13].

The perspective is to know if there are substantial dif-
ferences in development performance, learnability and ver-
bosity between those who use SNCL compared to NCL users.
In this section, we describe in details the experimental eval-
uation.

4.1 Study Hypothesis

The authors of sSNCL defend that the language is simpler
and its main objective is to minimize the problems presented
by NCL. According to [13], the main goal is to introduce a
simpler way of developing multimedia applications for the
Ginga-NCL middleware.

Like NCL, sNCL is a domain-specific language (DSL),
however, it is based on Lua, an imperative language, whereas
NCL is based on XML, which makes NCL more verbose.
The article [13] argues that because sNCL is less verbose,
users use less code to express an idea using sNCL. Also, it
is more succinct. It is worth mentioning that its authors
did not create the language with the objective of replacing
NCL, but rather, offering a complementary tool for use in
the development of multimedia applications.

The first hypothesis of this work (H1) says that sNCL
provides to the programmer higher productivity compared
to NCL. The second hypothesis (H2) states that SNCL is less
verbose than NCL. The last hypothesis (H3) says that SNCL
is easier to learn because it is simpler than NCL. The null
hypotheses are the opposite of the above-mentioned ones, as
shown on Table 1.

4.2 Experimental Object

The object of this experimentation is sSNCL, a DSL pro-
gramming language for development of multimedia applica-
tions. Also, it is analyzed its the qualities compared to the
NCL language.

Some aspects were chosen to examine of this language in
order to compare to NCL and verify whether the hypothe-
ses are proven or refuted. We aim to analyze the following
points: (i) productivity; (ii) verbosity, and finally (iii) learn-
ability.

4.3 Participants

The experiment was performed with 29 participants, who
agreed to participate voluntarily. The participants are un-
dergraduate students from the Federal Institute of Bahia
(IFBA) primarily from the course Systems Analysis and De-

velopment. The students have different backgrounds or ex-
perience related to computing and programming languages.
They also have different levels of knowledge in programming
languages.

For this study, all the information about the experiment
was provided, such as the purpose of the experiment. How-
ever, details about the hypotheses stated by this work were
not provided to the participants. They were advised about
the possibility of quitting their participation at any time
without penalty. Moreover, all the data collected from the
participants, such as personal information, opinions, and an-
swers were treated as confidential.

Expertise Average of the Participants

n
L

Average Expertise (0-3)
= —
i =

0.0 - T T T T
(o Java Python C++ Ouiras IDEEcipse Linux Lua XML HTMLGinga Middleware

NCL sNCL
|

Figure 3: Technical Knowledge

We provided three sessions of training for each language.
During the planning of these training sessions, the knowl-
edge levels of the participants were taken into account. The
participants were separated by the level of expertise so they
could attend to the appropriate training session. Those with
a lower level participated in the training with the class com-
patible with their level. This strategy was adopted, in order
to levelling the participants.

We divided the participants into groups, where each group
received a training about either NCL or sNCL. During the
selection we tried to balance the knowledge of the group so
that the participants with similar level of expertise could
be together. It is worth to mention that the participants
did not attend more than one session. Each student could
participate only once, also they were asked to not comment
on the experiment with others students in order to avoid
prior knowledge about the study.

Also, the participants received a material containing the
basics concepts about the language and it was available dur-
ing the experiment. It is noteworthy that no previous knowl-
edge about any programming language was a requirement to
join this experiment. Because one of the objectives is to ob-
serve how the participants learned the sNCL language.

Before starting the experiment, we asked each student to
fill-out a characterization form, where they could attest their
experience and level of technical expertise on the program-
ming languages and concepts. This was used to grouping
them as mentioned.

It is important to emphasize that the participants were not

Previous Knowledge in DSL and NCL

NCL

[[sNCL

Figure 4: Previous Knowledge

familiar with the experimental object, as shown in Figure 4.
However, this was not a requirement to join the experiment.
The average level of expertise in different technologies of
each group is shown on Figure 3. It is possible to note that
there is not a large difference between the two groups. As
shown in Figure 5, the participants of each group have sim-
ilar expertise mean. The expertise level of each participant
ranged from 0 (no knowledge) to 3 (Expert) on a certain
topic, being 1 is equivalent to low and 2 to moderate. We
extracted the results of knowledge based on the sum total
from the range above mentioned.

Boxplot of Expertise

Expertise

}7

NCL sNCL
Group

Figure 5: Boxplot Expertise by group

4.4 Pilot Study

A pilot study was conducted prior to the experiment with
the purpose of identifying certain issues in its procedures,
tools used, or in the development environment. The inten-
tion was to reduce the possible problems that could happen
during the experiment as much as possible. Also, the pi-
lot study help us to set a estimated time for the training
sessions.

Two participants were chosen to perform the pilot study.
Each of them was assigned to attend either NCL or sNCL.
As the participants in the final experiment, they also filled
out the consent and characterization form so that we could
analyze their expertise level. It is worthy to emphasize that
these two participants did not take part of the final exper-

iment. The pilot study allowed us to enhance the assign-
ments’ description, objectives, and level of difficulty. More-
over, it was also essential to tune the experiment timing in
100 minutes.

4.5 Task Design

We tried to determine a comprehensive task for the ex-
periment where the groups could answer applying the con-
cepts based on the session training and the provided material
about the language. The task definition was based on basic
concepts of both NCL and sNCL languages. The goal was
verify the learnability, productivity and verbosity from both
language.

The task asked to the participants was to develop a sim-
ple application using few concepts of the languages. The
simplicity of the task was chose because the time limited
time during the sessions. Through this task, it is possible
to introduce the basic concepts about the NCL and sNCL’s
equivalency. It is worth mention that the proposed task can
be done in both languages.

The task had this design because: (i) the students are not
familiar with the programming languages; (ii) it was set up
a time limit for the experiment in order to avoid participant
fatigue; and (iii) finally, it does not favor either programming
languages for the execution of the tasks.

As we only proposed one task, we measure the results
based on each element correctly declared and if it meets its
purpose according to the task. The participant could get a
total or partial point for each element.

The maximum number of possible points is 12 points, and
we considered all participant’s answers that filled out the
correct start time and end time information asked during
the experiment.

4.6 Experimental Procedures

The experiment was performed in six training sessions,
three for each group. To avoid any problems during the
experiment all sessions were supervised.

The experiment occurred in two different moments. At
first moment a group of participants received training about
the language. After the the sessions, online surveys were
given asking qualitative questions about both languages.

The necessary tools were installed and tested previously
to the experiment, such as IDE, plugins, virtual machine.
Eclipse IDE with NCL plugin was used for the NCL group,
VMware Workstation Player, a virtual Ubuntu server ma-
chine with Ginga Set up box already configured. For sNCL
training session, the software used was Lua and LuaRock
and sNCL library. We chose Linux as operating system to
setup environment to run the experiment. The version used
was Kubuntu 17.10.1, and in order to reduce the setup time
in the preparation of the environment, a custom image of
Linux system was made. This custom system has been in-
stalled on USB drives for each participant.

The participants received all the information about the ex-
perimentation and its methods, and signed up a form con-
senting the participation. The experiment itself was run
in university laboratories where the entire environment was
previously set up.

The training session for the experiment last 100 minutes.
This time was defined according to the pilot study (see Sec-
tion 4.4). The experimental procedures were:

1. The NCL Eclipse plugin tools used to help on the de-

velopment environment. Hence, all the students could
have the same IDE and tools during the experiment;

2. The students filled out the characterization and con-
sent form and were divided based on the information
that they provided. The criteria to separate them into
two group was the background and previous knowl-
edge;

3. A training session of 50 minutes was organized in order
to present the basic concepts of both languages and to
show how both tools work. Additionally, we provided
the purpose and goals of the study. After the explana-
tion about the language concepts, we gave an example
using the language and the tools, in order to make
the students feel comfortable with the software used
in the experiment. They were encouraged to address
any questions or concerns during the training session.
Thereafter, we gave to the participants an assignment
where they need to use the concepts learned and use
the tools. Moreover they were asked to measured to
time of begin and end of the task;

4. The experiment itself was run in university laborato-
ries where the entire environment was set up. The
time was measured by considering the difference be-
tween the final and initial time of each task. The time
of any interruption during the task execution was de-
ducted from the total execution time;

5. We analyzed the results. Correctness was measured
by comparing the correct answer model with each stu-
dent’s answer. We converted the responses into quan-
titative values according to 10. The entire assignment
worth 12 points, and each correct part worth a set of
points. For each correct answer the point for the sec-
tion was give, however the wrong answer did not count
negatively;

6. Finally, we applied a feedback questionnaire. It ques-
tionnaire was applied on-line in order to guarantee a
better experience for the participants, and to avoid
discourage from them. In the questionnaire they were
asked about the training session, language, opinion
about the understanding and the task;

S. RESULTS

This section discusses the experimental results. The sta-
tistical tests used are described throughout this section. On
subsection 5.1 we discuss about the times spent on the ex-
periment as well its results and implications. On subsection
5.3 we discusses about the correctness of the experiment and
its relation to the time spent.

5.1 Statistical test

We performed statistical tests to accept or reject the hy-
potheses aforementioned Table 1. The tests were conducted
in three phases. First of all, the descriptive statistics analy-
sis was performed with the calculation of mean, minimum,
maximum and standard deviation value. Also we analyzed
the data to verify if the samples distribution were normal
and with equal variances. To ascertain these information,
we applied the Shapiro-Wilk and Levene tests. After verify-
ing the normality and distribution of the data, we chose two

tests, t-test and Mann-Whitney to be applied relying on the
fact whether the data were parametric or not. The t-test
was chosen because it is a parametric method used to test
whether a set of samples comes from normalized distribu-
tions. It is used to test the null hypothesis of that all popu-
lations have equal distribution functions against the alterna-
tive hypothesis that at least two of the populations have dif-
ferent distribution functions. In order to avoid cumbersome
fixes and possible errors, improving the validation process
of the statistical test, we use IBM SPSS Statistics and R.
The variables measured were time, correctness (points), ver-
bosity (length) and expertise, productivity. Thus, we used
the parametric t-test to analyze the hypotheses H2, H3. The
sample distribution of productivity was not normalized, con-
sequently we select the non-parametric Mann-Whitney test
to analyze the hypothesis H1. The confidence level used on
this study was of 95% (a = 0.05). The third phase was to
evaluate the hypotheses based on the tests previously done.

Table 2: Statistical hypothesis testing

t-test Mann Whitney
Levene
p-value p-value
Tlr.ne 0.775973 | 0.224
(minutes)
Cor.rectness 0.45135 0.675
(points)
Verbosity
(length) 0.000033 | 0.019
Verbosity 0.000106 | 0.004
(lines)
Productivity
(length /time) 0.756 0.009

5.1.1 HI: Productivity

The productivity of both languages was measured from
the ratio of the size of the code by the time spent during the
experiment. As we can see in the Table 3, the productivity
is higher on the sNCL group. Analyzing the time spent sep-
arately, we can see that the participants in the SNCL group
had a slightly lower mean than the participants in the NCL
group as shown in Figure 3. However, as the productiv-
ity is measured by the ration of length by time, the mean’s
verbosity of NCL code affected directly the productivity.

Although the mean’s time spent was lower, the variance
calculated with the Levene test shows that there is no signif-
icant variance between the samples (p-value = 0.2244). To
test H1 we used the Mann-Whitney test, because for this
attribute, from the statistical calculations we can observe
that the sample is not normalized as we can see in Table
3. According to the result, the p-value=0.0097 can not re-
ject the null-hypotheses H1, indicating that sNCL does not
present higher productivity than the NCL.

5.1.2 H2: Verbosity

To measure the verbosity of the codes we adopted two
metrics. The first is calculated by the number of lines of
the code, and the second is the amount of characters. The
results is presented on Table 3 as Verbosity (lines) and Ver-
bosity (length) respectively. Both the mean of the lines
and the length are significantly larger in the code’s partic-
ipant from NCL group. As we can see on Table 2, Levene

test shows that variance the significance equal 0.004 so that
we can reject the null hypothesis, showing that there is a
significant variance between the lines from both samples.
The variance for the length had a similar result, with a p-
value=0.019. The results on Table 2 shows that there is
a statistical difference between the verbosity of NCL and
sNCL. Also, regardless the correctness the verbosity of NCL
code is indeed higher.

5.1.3 H3: Correctness

The score of each participant was extracted from a pre-
viously determined task performed during the experiment
as mentioned throughout the Section 4. If the participant
had answered partially or entirely correct, part or all the
points were computed, otherwise no point were attributed.
The points were computed per corrected element, and we
adopted integer values in order to facilitate point calcula-
tions. Although there is a difference between the means of
the two groups as shown in Figure 3. The variance of the cal-
culated samples is significantly equal with p-value=0.6753,
and the mean from NCL is higher than sNCL, as well the
measure of Minimum and maximum (Figure 3) this might
be related to the fact that, the NCL group used the NCL
plugin. Moreover, during the experiment was noticed that
the participants from sNCL group had more compilation er-
rors, as shown in the Figure 9, it is because the way that
the sNCL code is compiled to NCL. Through the t-test we
found the p-value=0.45135 so the p > 0.05 the difference
between means is not statistically significant.

6. LESSONS LEARNED

This section shows lessons learned from the experiment.
Moreover, we discuss about the productivity, verbosity, cor-
rectness of the SNCL compared to NCL and the user’s point
of view.

6.1 Productivity, Correctness and verbosity

Regardless of the correctness of the participants, through
the data collected it was possible to verify that the produc-
tivity is greater with the NCL language. Nonetheless, it is
due to the fact that the NCL is more verbose than sNCL as
we can verify in the chart of figure 6, 7 and 8.

Figure 6: Productivity by Group
Population Pyramid Frequency Productivity by Group
Group
sNCL NCL

250 250

150 150

Productivity
Aagonpoid

Furthermore, the tool (NCL Eclipse) used during the ex-

periment in the NCL training session helped participants in
coding. Because the plugin helps to highlight syntax errors
and auto-completion.

The verbosity measures used were both lines of code, which
is represented by the box-plot on figure 8 and the length,
which is the number of characters presents on the code, that
is represented by the box-plot on Figure 7.

Figure 7: Box-plot of Length
Boxplot of Verbosity (length) by Group

2000

1500

L
)
c
()
- 1000
2
0
500
0
NCL sNCL
Group
Figure 8: Box-plot of Lines
Boxplot of Verbosity (lines) by Group
80
"]
g [
£

NCL shCL
Group

As can be noticed in box-plots (Figure 7 and 8), both the
measurements of lines and the length of the code are much
larger in the samples from the NCL group than in the sNCL
group.

Another aspect it is worth to highlight, is that during the
experiment the participants had some compile errors. How-

Table 3:

Descriptive Statistics of the experiment Results

Group | Mean | Minimum | Maximum | Standard Deviation Shapiro-Wilk
p-value

Time NCL |29.36 | 16 37 6.741 0.098
(minutes)

SNCL [28.25 | 10 50 11.054 0.924
Verbosity NCL | 971.36 | 598 1738 314.906 0.054
(length)

sNCL | 335.58 | 175 601 115.404 0534
Verbosity NCL | 3982 |20 63 11.762 0.993
(lines)

SNCL [1841 |15 24 2.644 0.342
Correctness | oy | 618 | 4 9 1.662 0.249
(points)

SNCL [566 |3) 1.556 0.051
Productivity
(length /time) NCL | 142 |o0.84 2.37 0.536 0.087

SNCL [0.86 | 0.34 2.13 0.522 0.008

ever, participants from sNCL group had more difficult to
deal with these errors and we believe that is due the tool
used to compile the code. Because unlike the tool used for
the NCL group, the sSNCL compilation is done through com-
mand line so that does not provide further information about
the syntax errors. On the survey applied after the experi-
ment we asked to participants if they faced errors during
the resolution of the task. The method used for the answers
was Likert scale, and the results can be seen on figure 9.
The bar chart, shows that, the majority participants from
sNCL group answered that had compilation errors during
the execution of the assignment.

During the experiment we could notice this kind of prob-
lem, also the sNCL group did not use a IDE as Eclipse, they
use Kate editor.

Figure 9: Pie chart of errors during the experiment
There were many compilation errors during the execution of the task.

Wstrongly Agree.

Magee

Hoisagree
Distrongly Disagree:

Group NCL Count

Group sNCL Count

6.2 User’s Point of View

In order to analyze the opinion of the participants about
the experiment and about the languages of the study. We
asked to the participants questions about the character-
istics of both languages as well questions related to the
understanding from the training session. These questions
are qualitative using the Likert scale. The questions were
about the ability to understand the concepts of the lan-
guages through the training section. The questionnaires

were equal for both group. The objective of it was to ana-
lyze the participant’s opinion, also to have a complementary
qualitative data about the object of this study. From 29 par-
ticipants, 20 answered the questions, 10 from each group.
The results are described in Table 4, the questions follow
the scale aforementioned and are numbered from 1 to 7.

Figure 10: Pie chart about the training session

Iwas able to learn the concepts presented about language.

Group NCL Count Group SNCL Count

The first question was related to the training session, if
the concepts taught were learned. The goal was to identify if
even with the limitation of the time the concepts were assim-
ilated by the participants. As we can see on Figure 10, the
majority of both group agreed that could learn the concepts,
although the answers from sNCL group were more positive.
These results presents that according to their opinion they
could apply the knowledge on the task proposed. The sec-
ond question asked if the training sessions were appropriate
according to the given task. We can notice on Figure 11 that
all the participants had a positive opinion about the lecture,
even though they did know about both language prior the
experiment. This question was useful to measure the per-
ception of the participants regarding the content taught, as
well the quality of the training.

The third question asked if the participants understood
all the elements presented, the percentage of the group is
described on Table 4. It important to highlight that the
referred elements are the one presented in the sessions, not

Figure 11: Bar chart

The course presented the concepts of language properly for carrying out the proposed activities.

Values

Group NCL Count Group sNCL Count

all the elements available on both languages. The results
shows that both groups felt they understood.

On the fourth question, they were asked about the learn-
ability of the language. Although the result of the previous
question has shown that most students understood the ele-
ments in question 4, the result in Table 4 shows 50% of those
who learned agreed that NCL is easy while 30% disagree
with the statement. In the sNCL group everyone agreed
with the statement.

The fifth question is related to the ease of implementing
the language code. All participants agreed with the state-
ment, however 70% of those in the sNCL group strongly
agreed with the statement. Related to the previous ques-
tion, the issue 6 states that languages have simple syntax.
As well as the previous question, the result was higher for
participants in the sSNCL group. The final question was re-
lated to the errors that occurred during the session. In this
topic most participants agreed that there were many com-
pilation errors. This may be related to the fact that during
the experiment, the participants learned the languages for
the first time, as well as some tools used.

7. VALIDITY EVALUATION

This section show the threats to validity of this experiment
and how they lessen during this study.

Conclusion Validity. We noted three threats in this
conception: (i)design of the task: the designed task could
have been too challenging or biased to a specific language.
In order to reduce this threat, we extracted a set of ba-
sic equivalent concepts from both languages, and designed
an assignment that could be performed by the participants.
The difficulty of the task was analyzed in the pilot study
where the participants were able to perform the assignment
in both languages; (ii) time restrictions : the period of time
reserved to the experiment could have impacted the par-
ticipants’ answers. The pilot study was used to estimate
the appropriate average time to perform the task in both
tools, so that we could avoid this risk; and (iii) heterogene-
ity of the participants: it refers to the choice of the partici-
pants involved, in the experiment. To decrease this threat,
we selected novice and experienced participants in program-
ming languages and tools from the undergraduate courses
of TFBA. Although this heterogeneity can still be seen as
a conclusion threat, it contributes, on the other hand, to

Table 4: Results of the Questionnaire

Question Scale NCL(%) | sNCL(%)
1 Agree 60 60
Strongly Agree 30 40
Disagree 10 0
Strongly Disagree | 0 0
2 Agree 40 50
Strongly Agree 60 50
Disagree 0 0
Strongly Disagree | 0 0
3 Agree 70 80
Strongly Agree 20 20
Disagree 0 0
Strongly Disagree | 10 0
4 Agree 50 40
Strongly Agree 20 60
Disagree 30 0
Strongly Disagree | 0 0
5 Agree 80 30
Strongly Agree 20 70
Disagree 0 0
Strongly Disagree | 0 0
6 Agree 70 30
Strongly Agree 20 70
Disagree 10 0
Strongly Disagree | 0 0
7 Agree 40 60
Strongly Agree 40 10
Disagree 10 20
Strongly Disagree | 10 10

minimize the external threats of the study.

Construct Validity. In this category, we observed two
threats: (i)operational procedures of the experiment: the
participants could not understand the experiment guidelines
properly. In order to reduce this threat, we performed a
training session explaining the basic concepts from both lan-
guages and the experimental execution process. During the
task, an example assignment was performed in the training
session with the goal to present how to use the tools for
each language. We also elaborated a tutorial material for
the participants so that they could have more information
about both language; (ii) confounding constructs and levels
of constructs: it relates mostly to the expertise level of the
participants. To lessen this threat, we chose students with
distinct levels of knowledge.

Internal Validity. Concerning the internal threat, we
noted one threat, which refers to the division of participants
to perform the task from the treatments. It is related to the
partition of the participants in the groups (NCL and sNCL).
In order to avoid this threat, each participant filled out a
form about their knowledge in programming languages and
tools related to the experiment. The groups were divided
based on the participant’s answers so that taking into con-
sideration their answers in order to make the partition as
impartial as possible.

External Validity. The threat in this category concerns
the generalization of the experiment result to other partic-
ipants compared to the ones on the experiment. To reduce
this threat, any participant who had a previous knowledge
in programming language regardless their level could join

the experiment.

We can note that exist threats to the construct, internal
and external validity. Nevertheless, these were mitigate in
order to have valid results.

8. CONCLUSIONS

This paper has presented a sNCL language and its fea-
tures comparing to NCL on application development. To
analyze these characteristics, it was conducted a controlled
experimental evaluation comparing sNCL to NCL in order
to understand the learnability, productivity and verbosity
and its impacts. The data obtained from the experiment
revealed positive results related to the verbosity of sNCL.
sNCL code provides a simpler and less verbose code. Also
we could learn that learnability from sNCL was not signif-
icantly higher, as lesson learned we find that this may be
related to aspects such as: not exist a development plugin
for IDE yet for sNCL, the way to compile the code and er-
ror output is not as clear as the NCL. The results regarding
the productivity present a higher mean related to the NCL,
however it is due the fact that NCL is more verbose, so
it produce more code per time. In addition to the quan-
titative data, through the questionnaire applied, we could
identify the opinion of the participants with respect to lan-
guages. According to the questions, most students in the
sNCL group found the language to have simple syntax and
it is easy to learn.

In this study, we selected undergraduate students with a
with varied background and applied the experiment in-vitro
in a controlled environment, and chose a simple task us-
ing the basic concepts of the languages. The data obtained
from the experiment revealed statistically significant results
related to verbosity of sNCL. It is worthwhile to run new
sessions of the experiment to perform the statistical calcu-
lations based on a larger sample to have a more accurate re-
sults. All the written material about the procedures needed
is provided on [7].

After the conclusion of the experiment and the collected
data, we may suggest some aspects of improvements such as:
(i) Creation of a plugin for use in Eclipse or another widely
known IDE, in which it is possible to highlight syntax and
code suggestions; (ii) Improvement in the code compilation
process, so that a detecting of an error is faster; (iii) The
continuous evolution of the language so that it can be widely
used by developers.

9. REFERENCES

[1] S. de Indicadores. Pesquisa nacional por amostra de
domicilios. 2009.

[2] L. de Macedo Tergas, D. d. S. Moraes, and C. d. S. S.
Neto. Specifying a domain specific language for
simplifying the authoring of digital tv applications.

[3] A. D. M. GINGA. Suporte para desenvolvimento de
apli-cacoes multiusudrio e multidispositivo para tv
digital com ginga. 2007.

[4] F. Hermans, M. Pinzger, and A. Van Deursen.
Domain-specific languages in practice: A user study
on the success factors. In International Conference on
Model Driven Engineering Languages and Systems,
pages 423—437. Springer, 2009.

[5] A. MEDOLA. Televisdo digital brasileira e os novos
processos de produgao de conteidos-os desafios para o

comunicador. Revista da Associagdo Nacional dos
Programas de Pés-Graduagdo em Comunicacdo,
E-Compds, Brasilia-DF, 12(3):1-12, 2009.

[6] P. Pessoa. Desenvolvimento de jogos para a
plataforma ginga utilizando nclua.

[7] J. Santos. Experimental evaluation,
https://github.com/jamilessnts/experimental-
evaluation.git.

[8] L. F. G. Soares, M. F. Moreno, C. D. S. S. Neto, and
M. F. Moreno. Ginga-ncl: declarative middleware for
multimedia iptv services. IEEE Communications
Magazine, 48(6), 2010.

[9] L. F. G. Soares, R. F. Rodrigues, and M. F. Moreno.
Ginga-ncl: the declarative environment of the
brazilian digital tv system. Journal of the Brazilian
Computer Society, 12(4):37-46, 2007.

[10] L. F. G. S. Soares. Programando em NCL 3.0:
desenvolvimento de aplicacoes para middleware Ginga:
TV digital e Web. Elsevier, 2009.

[11] C. Soares Neto, C. Souza, and L. Soares. Linguagens
computacionais como interfaces: um estudo com
nested context language. Simpdsio Brasileiro de
fatores humanos em sistemas computacionais, Porto
Alegre, RS, 2008.

[12] G. L. d. Souza Filho, L. E. C. Leite, and C. E. C. F.
Batista. Ginga-j: The procedural middleware for the
brazilian digital tv system. Journal of the Brazilian
Computer Society, 12(4):47-56, 2007.

[13] L. d. M. Tergas, D. d. S. Moraes, D. d. S. Ribeiro,
M. C. M. Neto, and C. d. S. S. Neto. Usability-based
language for authoring ncl documents. In Proceedings
of the 23rd Brazillian Symposium on Multimedia and
the Web, pages 101-108. ACM, 2017.

[14] C. Wohlin, P. Runeson, M. Hést, M. C. Ohlsson,

B. Regnell, and A. Wesslén. Ezxperimentation in
software engineering. Springer Science & Business
Media, 2012.

10. APPENDIX

10.1 Characterization Form
| SUBJECT CHARACTERIZATION |
[A) PERSONAL DATA |

1. Name:
Gender: ()Male ()Female

2. Course:
3. Email:

Semester:

| B)TECHNICAL INFORMATION

1. Which language do you program?
() C () Java () Python ()C ++ Other:
2. How do you rate your knowledge on the following top-
ics:
3. IDE Eclipse
() None () Low () Moderate ()Expert
4. Linux
() None () Low () Moderate ()Expert

5. Lua Language
() None () Low () Moderate (

6. XML
() None () Low () Moderate ()Expert

7. HTML
() None () Low () Moderate (

8. Ginga Middleware
() None () Low () Moderate ()Expert

9. Do you know any DSL language?
()Yes ()No

10. Have you worked with NCL before?
()Yes ()No

10.2 Consent Form
Name:

The information contained in this form intended to enter
into a written agreement, whereby the subject authorizes
its participation in the NCL and sNCL experiment. The
subject has full knowledge of the nature of the procedures
which he has to follow to be a participant. The subject
is free to give up to be a participant at any time without
coercion. This participation is voluntary and the subject
of this experiment is free to withdraw your consent at any
time and fails to participate in the study without prejudice
to any service that is being or will be submitted.

1. EXPERIMENTAL STUDY TITLE

An Experimental Evaluation of sSNCL compared to NCL.

2. TOPIC
Experimental Evaluation.

3. STUDY PURPOSE

To evaluate the differences between NCL and sNCL.
4. RESPONSIBLE INSTITUTION

Federal Institute of Bahia
5. RESPONSIBLE RESEARCHERS

e Janile Samtos

e Manoel Neto
e Renata Novais

6. INFORMED CONTENT

I, certify that, having read the above
information, and sufficiently informed of all the items, I fully
agree with the experiment. So, I authorize the execution of
the research above.

Subject signature:

10.3 Survey

Name:
Programming language:
Date: Y Ay
Location:

Strongly Agree
Agree

Disagree

Strongly Disagree

1. I was able to learn the concepts presented about lan-
guage.

2. The course presented the concepts of language properly
for carrying out the proposed activity.

Strongly Agree
Agree

Disagree

Strongly Disagree

3. I understood the elements of language.

Strongly Agree
Agree

Disagree

Strongly Disagree

4. T understood the elements of language.

Strongly Agree
Agree

Disagree

Strongly Disagree

5. I found the language easy to learn.

Strongly Agree
Agree

Disagree

Strongly Disagree

6. The language is easy to implement.

Strongly Agree
Agree

Disagree

Strongly Disagree

7. I found the language syntax simple.

Strongly Agree
Agree

Disagree

Strongly Disagree

8. Many compilation errors occurred during the execution
of the task.

Strongly Agree
Agree

Disagree

Strongly Disagree

9. What is your experience with logic programming and
software development?

Time (years) | Lessthan 1 | 1to 2 | 2 to 3 | More than 3

10.4 NCL Tutorial

This tutorial aims to introduce the concepts of NCL (Nested
Context Language).

Part 1

NCL is a declarative programming language based on XML
for developing applications for Brazilian digital television.
We use NCL to build multimedia documents.

But what is multimedia document?

It is a document that have more than one type of media,
for example: image, audio, video.To build these types of
documents, we need to define: what we want to play, where
(where on the screen) and when.

NCL document’s structure
An NCL document is a XML-based file that contains:

e Head of the file
e Head of the program: where is defined regions, descrip-
tors, connectors and the usage rules.
e Body: where is defined the contexts, media nodes, links
and other elements that defines the content and structure of
the program.
e Port: indicates where starts the exhibition of the program
e Conclusion: end of the document.

On the previous figure is presented the basic structure of
NCL document.

1. Head of the file
Head

body

port

contexts
medias, links
Head of the file:

<?xml version=%1.0"” encoding=“ISO-8859-1">
is the first code line where is defined the version and

= o otk N

<Ml versions"1,0" encodlng="150-8859-1"?

ncl dd="new_ncl_file" wmlng="http://wew.ncl.org. br/MCL3. O/ E0TVProfile™s

<head>
<regionBaser

:Jregiunﬂa;:s
<descriptorBaser
¢/descriptorBase;
<connectorBase>

¢/connectorBase>
«/head>

<body>
tport ide"p

tio" component="ncPrincipal” interfaces"iBegin"/»

</body>
4/ncly

Figure 12: Struture of NCL

type of codification. In this example is ISO-8859-1.
<ncl id=“new-ncl-file”> this tag defines the begin-
ning of NCL program. The tag has few attributes such
as id which defines a unique identifier that can be used
as a reference by other NCL elements.
2. Head:

The header is delimited by the <head> and </ head>
tags equal to the HTML. Within the head tag we de-
fine three basic elements of an NCL program, which are
described below:

+ Region Base

It is the region It is the region where we define where
the media will be displayed on the screen.

<regionBase>
<region width="720" height="1088" id="rgTV/"»
<region left="430" top="150" width="1024" height="400" id="rgvVideo"/>
</regiony

</regionBase>

Figure 13: Region Base

On the previous example is defined two regions: rgTV
with the attributes width, height and id which specify the
width of the region in pixels, the height of the region and
the identifier of the region, respectively. The “rgVideo” re-
gion has aside the attributes already mentioned two others:
left and top, which define the position of the region on the
screen, in relation to the left and top, respectively.

¢ Descriptor Base

Descriptors define how and where media will be displayed.
In the example below a descriptor with the attribute id equal
to “dVideo” is created. Also defined is the “region” attribute
that refers to a previously created region, called rgVideo.
The descriptors govern the behavior of a “media node”, for

example defining the region where the media will be dis-
played. In this example, the media would be displayed in
the rgVideo region.

<descriptorBases
{descriptor region="rgVidso" id="dVideo"/:

¢/descriptorBase:

Figure 14: Descriptor Base
o Connector Base

Connectors define how links are activated and what they
trigger. Usually, the connectors are defined in a file outside
the main file. It is possible to keep the code of the connec-
tors in the main file, however, it is recommended to use an
external file. This keeps the code more organized, allows the
reuse of the connectors and makes the work easier.

{connectorBase’
¢importBase alias="conectores” documentURI="connectorBase.ncl"/?

{/connectorBase>

Figure 15: Connector Base

In the previous one, the “documentURI” attribute of the
file “connectorBase.ncl”, which is in the same directory as
the NCL program, contains dozens of connectors ready. The
“alias” attribute is used to identify to be loaded. This “iden-
tification” will be used by the links to refer to the loaded
base.

<head>
<regionBase>
<region width="720" height="1880" id="rgTVv">
<region left="43@" top="158" width="1824" height="488" id="rgVideo"/>
</region>

¢/regionBase>
<descriptorBase>
<descriptor region="rgVideo" id="dvidec"/»
¢/descriptorBase>
<connectorBase>
<importBase slias="connectors” documentURI="connectorBase.ncl"/»

</connectorBase>

</head>

Figure 16: Example of a complete <head>

Body:
In the body are inserted media (nodes), ports, links, and

anchors.
¢ Media

They are associated with media types (txt, HTML, jpeg,
mpeg etc).

<media type="video/mpeg" id="videol" src="videol.mpg" descriptor="dVideol"»

50

<media type="videoA/mpd4" id="video2" src="videoh.mp4" descriptor="dVidea2"y

<media id="hotaoSair" src="media/botao_sair.png" descriptor="ds_botaoSair"/>

Figure 17: Media example

In the picture, we have 3 nodes, where the media are ref-
erenced through the “src” attribute. Note that the “type”
attribute of the media is optional, it defines the type of me-
dia, whether it is video, text, image, etc. The most com-
mon types are: image / gif, image / png, image / bmp,
video.mp4, text / plain, audio.mp3.

e Ports

Through the ports, we can access the contents of a con-
text. That is, for a link to point to a node that is internal to
the context, it must have a port that directs to the internal
media.

{port id="VideoPrincipal” component="videol"/>

{port id="portl" component="dVideo2"/»

Figure 18: Port example

The attribute “id” defines the port and the “component”
defines which media will be accessed in a given context. In
the example, component = “videol” will activate the id =
“videol” media.

e Links

With the links we can synchronize events in an NCL pro-
gram. For instance, the links help to start running one media
simultaneously with another, it also defines its term.

<link xconnector="conectores#onBeginlstarth® id="TitulolInicial">
<bind role="onBegin" component="dVideol"/»
<bind role="start" component="ds_botacsair"/»

</Link>

Figure 19: Link example

This synchronization is possible because of the connec-
tors, as already mentioned above can be created in a sepa-
rate file or inside the main NCL file.Note that in the exam-
ple, the “xconnector” attribute references the base connec-
tors that will be used. In xconnector = “connectors “onBe-
ginlStartN”, note that # separates 2 values in the attribute,

the first part refers to the connector base, which was the alias
we gave in the declaration of the connectors, and the second
part indicates that the connector will be used. The <bind>
tag determines which form and which media will activate the
link. On <bind> the media is being called by “dVideol” and
“ds-botaoSair” will be displayed simultaneously.

e Anchors

Anchors are entry points for the media nodes or contexts.
The purpose of using anchors is to use segments of a media
node or context, either as the source or destination of links.
In other words, the area represents an excerpt in the time or
space of the media to which it belongs. There are two types
of anchors: content and attribute.
e Content

Defines a segment of the media, a range of time, or region
of the screen that can be used as the trigger point for links.
The content anchor is defined by the <area> tag within the
<media> tag.

<media type="video/mpeg" id="videol" src="videol.mpg" descriptor="dVideol":
{area 10="aVideoleghl" begin="55" end="10s"/>
{area 1d="aVideolegd?" begin="11s" end="16s"/>

¢mediay

Figure 20: Content anchor
e Attributes
Refers to the ownership of a source or destination media,

which can be manipulated by the links. For example media
volume (video).

<media type="video" id="videol” src="media/videocl.mpg" descriptor="dVideol">

trobutos gue serdo controlados pelos links --3

y id="height"” name="height"/>

<area id="aVideolImageml" begin="4s" end="6s"/>

</media>

Figure 21: Attribute anchor

10.5 sNCL Tutorial

This tutorial aims to introduce the concepts of sNCL (Sim-
pler Nested Context Language).

Part 1

sNCL it is a domain-specific declarative language (DSL) that
was developed with the goal of ease the authorship of mul-
timedia applications that compile for NCL.The syntax is
similar to the imperative language Lua.

But what is multimedia document?

It is a document that have more than one type of media,
for example: image, audio, video.To build these types of

basico comp.jpg
<ncl>
<head>
<regionBase>
<region width="720" height="1888" id="rgTV">
<region left="43@" top="15@" width="1824" height="48@" id="rgVideo"/>

<connecto
<importBase alias="connectors” documentURI="connectorBase.ncl"/>
</connectorBase>
</head>

<body>

15tarth" id="TitulolInicial"»

"onBegin" componel 1"/>

<bind role="start" component="ds_botaoSair"/>

dia/videol.mpg" descriptor="dvideol">

que serdo manipulados pelos elos -->

<area id="aVideolImageml" begin="3s" end="85"/>

Figure 22: An example of a full basic NCL code

documents, we need to define: what we want to play, where
(where on the screen) and when.

Elements of an sSNCL document

o Media
e Port

e Links

e Region
e Context

Media

It is the word reserved to represent a media, which can be:
photo, video, audio.

Figure 23: Media declaration

The figure above illustrates the state of a media in sSNCL.
Notice that the reserved word media is followed by the word
introduction, which is the identifier (id) of the media. This
identifier must be unique and serves for the media to be
referenced elsewhere in the code.The reserved word src is
where we indicate where the media is.

The media can contain attributes that define its size and
position as width, height, left, right, top, bottom. Note that
there is also an area declaration in the example, this area
is an anchor that is an entry point for the media nodes or
contexts. The purpose of using anchors is to use segments of

a media node or context, either as the source or destination
of links.

In other words, the area represents an excerpt in the time
or space of the media to which it belongs.In the example
shown we can see that we have two areas, one with all the
information in one row and the second one is made the dec-
laration in an indented way and in separate lines.

It is worth noting that indented code is not mandatory,
but in this way, it transforms the readable code for under-
standing.

Port

At launching an application, the player needs to know which
media will be played at the beginning, the port has that pur-
pose, and then the media will be executed at the beginning.
The port can be declared anywhere in the code, as long as
it is not the child of any element. It must be declared inde-
pendently, as shown in the following example:

e codigo inicio basic sSNCL.jpg

port entry introducaoc

media animation

area seglnicio

begin = "5s"
end
area segPhoto begin = "6s5" end
width = "188%" height = "I
zIndex = "2"
explicitDur = "25s5"

end

media audiol

src = "mediafaudicl.mp4”
end
media te
src = "media/sdrible.mp4”
left = "5%" top = 7%"
width = "18.5%" height = "18.5%"
zIndex = "3"

end
media photo
src = "media/|

left = "5&%"

width = "18.5%" "18.5%
zIndex = "3
explicitDur = "5s"

Figure 24: sNCL basic example

Notice that there is a new attribute in the medias anima-
tion and photo, the attribute is explicitDur, it specifies the
duration of each media explicitly.

Link

Through the links, we can synchronize events into a pro-
gram. For instance, the links help to start running one me-
dia simultaneously with another, it also defines its term.

The conditions for the execution of the media is made by
the links, these conditions are blocks, which begin with the
word defining the action, and the media that receives the
action, and ending with the word “end”, within which the
parameters of the action. As showed on the following pic-
ture:

Region

The region element is important because it defines a region

port entry introducao

media animation

src =

area segl

begin =
end
area segPhoto begin = "6s5" end
width = "1080%" height = "l1@ex"
zIndex = "2"
explicitDur = "25s"

media audiol

src = "media/audiol.mp4™

media photo

src = "media/photo.png”
left = "5%" top =
width = “18.5%" height
zIndex = "3"

‘.
i
[=]
i
Ed

explicitDur = "Ss"

Figure 25: sNCL Link example

on the screen, and is widely used since several media can
reference the same region.

The region has attributes as well as the media element,
among its attributes are: width, height, zIndex, rg.The zIn-
dex attribute specifies how to overlap regions. A region of
greater value for zIndex overlaps with that of lower value.

The rg attribute is used in the media to reference a region.

media textos

src = "media/legenda.jpg” rg= frameReg
left = "5%" top = %"

width = "18.5%" height = "13.5%"
zIndex = "3"

media photo

src = "me
left = "5%" top =
width = "18.5%" height = "13.5%"
zIndex = "3"

/photo.png” rg = frameReg

explicitDur = "5s"

end

onBegin animation do
start sudiol

delay = "5s"

end

end

onBegin animation.segInicio do
start sudiol end

end

onBegin animation.segPhoto do
start photo end

end

onEnd animation do

stop audiol end

]

a

Figure 26: sNCL region example

Context

The context element can be used to structure an applica-
tion. In the following example, we will illustrate the use of
contexts, grouping all the elements of the animation. This
will allow, in addition to the greater structure of the pro-

gram, the reuse of the entire structure.

