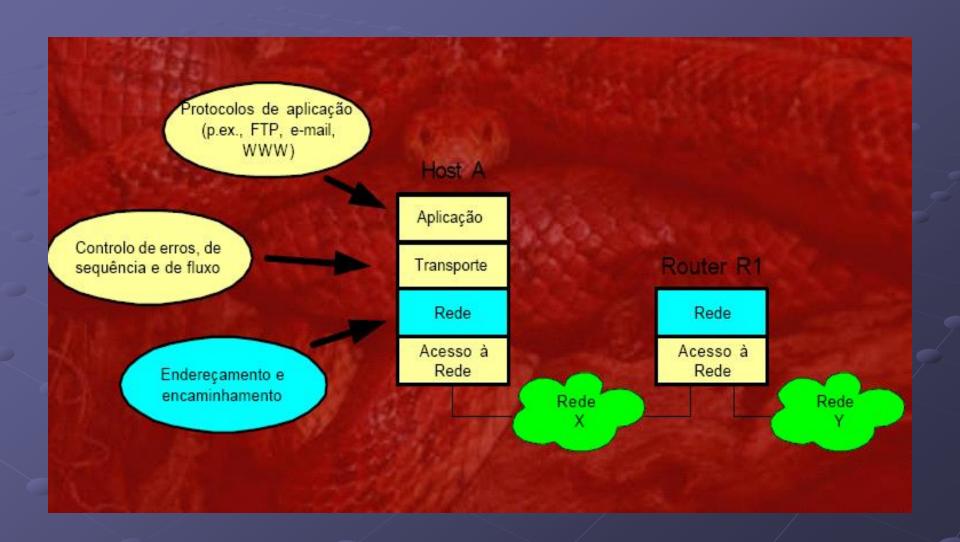
Endereçamento IP

Departamento Eng^a Electrotécnica ISEC

Objectivos

- Visão geral sobre o endereçamento IPv4 e IPv6
- Administração do espaço de endereçamento
- Obtenção de endereços
- Atribuição de endereços (manual ou automática)
- Endereços públicos e privados


Resumo

- Introdução
- Endereçamento IP
 - Classes de endereços IP
 - Sub-endereçamento e máscaras de sub-rede
 - Super-endereçamento e CIDR
 - Resolução de endereços IP
- Obtenção de endereços
 - Administração do espaço de endereçamento
 - Regional Internet Registries
 - Local Internet Registries
- Atribuição de endereços numa LAN
 - Configuração manual
 - Configuração automática (DHCP)
- Network Address Translation

Introdução

- Identificação unívoca dos sistemas na rede
- Identificação das interfaces de rede
- Base das funções de encaminhamento endereçamento IP

Posicionamento

Endereços e pacotes IP

l ≼ 32 Bits >I					
Versão Comp. cabeçalho	DSCP	Comprimento Total (em Bytes)			
Identificação		Flags	Offset de Fragmento		
Tempo de Vida	Protocolo	Checksum do Cabeçalho			
Endereço IP de Origem					
Endereço IP de Destino					
Opções (se Existentes)					
Dados					

Classes de endereços IP

Classes de endereços IP (cont.)

- Inicialmente, o espaço de endereçamento estava dividido em classes.
- Hoje usa-se um endereçamento não baseado em classes
 - Designação /n (indica nº de bits)
 - Classe A / 8
 - · Classe B / 16
 - · Classe C / 24

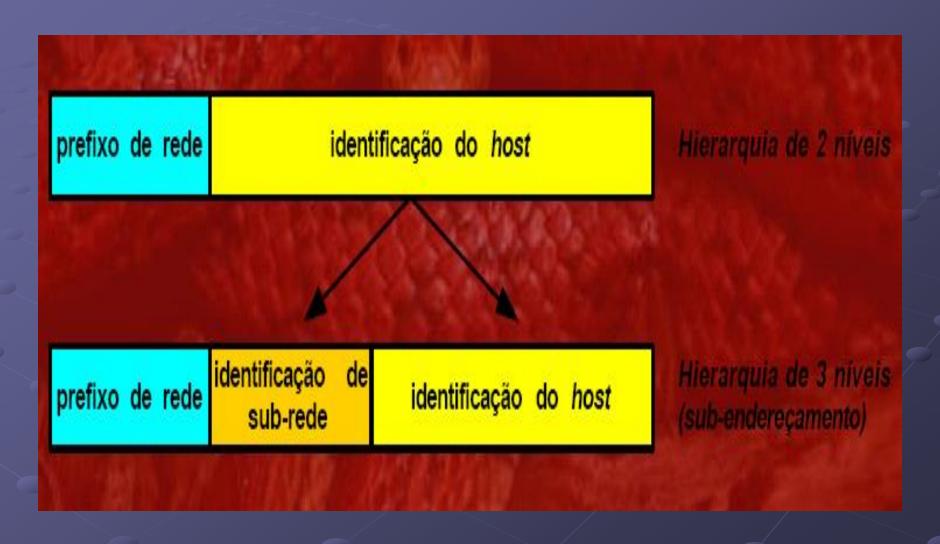
Endereços IP especiais

Dotted-decimal notation

- Quatro números decimais de 0 a 255, separados por pontos
- Cada número corresponde à representação decimal de um dos 4 bytes do endereço IP.

11000000 10101001 00100011 00000111

192.169.35.7


Gamas de endereços para as diversas classes

Classe	Gama			
A (/8)	0.0.0.0 a 127.255.255.255			
B (/ 16)	128.0.0.0 a 191.255.255.255			
C (/ 24)	192.0.0.0 a 223.255.255.255			
D	224.0.0.0 a 239.255.255.255			
E	240.0.0.0 a 247.255.255.255			

Sub-endereçamento

- Dentro de uma dada rede, a parte reservada para a identificação dos hosts poderá ser dividida.
- Reservam-se alguns desses bits para a identificação de sub-redes da rede em causa.
- Sub-endereçamento: introdução de um novo nível hierárquico de endereçamento

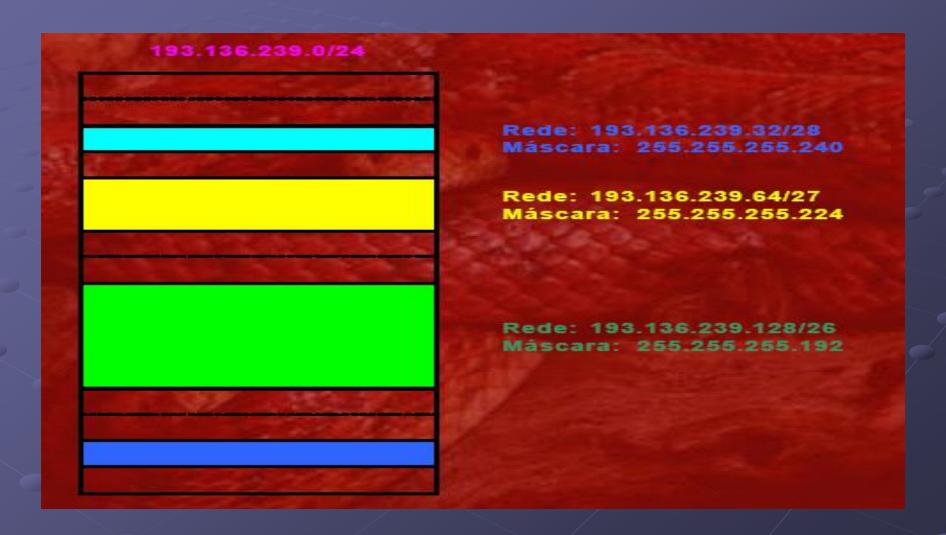
Sub-endereçamento (cont.)

Sub-endereçamento (cont.)

- A utilização de sub-endereçamento conduz a uma utilização mais eficiente do espaço de endereçamento.
- O encaminhamento também é simplificado
- Todas as sub-redes são vistas do exterior como uma única rede

Máscara de sub-rede

 Número binário de 32 bits que, após produto lógico com um qualquer endereço IP de um host da sub-rede, permite determinar o endereço da sub-rede em causa.


Máscaras de sub-rede: exemplos

Nº bits rede	Nº end. IP	Máscara de sub-rede
/ 24	256	255.255.25.0
/ 25	128	255.255.255.128
/ 26	64	255.255.255.192
/ 27	32	255.255.255.224
/28	16	255.255.255.240

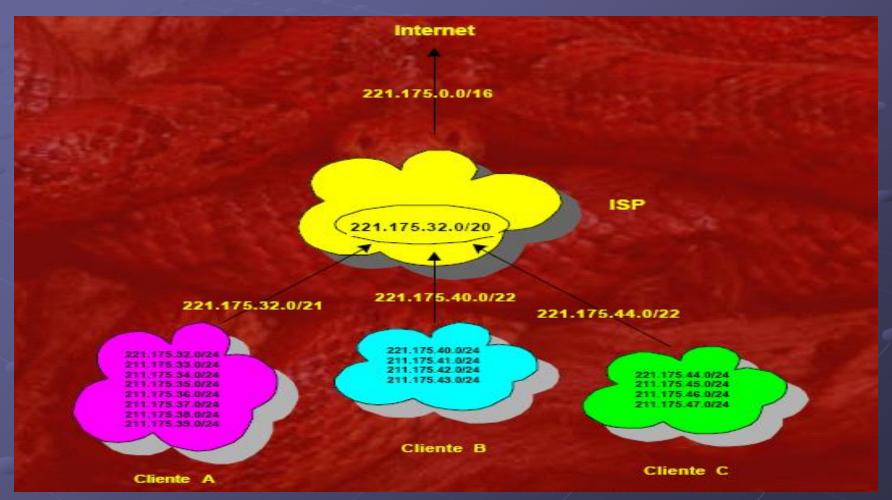
Máscara de sub-rede (cont.)

- Tal como nas redes, nas sub-redes o 1º endereço IP (todos os bits do host a zero) é reservado para indentificar a sub-rede.
- Tal como nas redes, nas sub-redes o último endereço IP (todos os bits do host a um) é reservado para endereço de broadcast da sub-rede.

Sub-redes: exemplos

Sub-redes (cont.)

- Pergunta: 193.136.239.192 é um endereço de uma rede ou de um host?
- Pergunta: 193.136.239.127 é um endereço de um host ou um endereço de 'broadcast'?


Súper-endereçamento e CIDR

- Endereçamento hierárquico (1990):
 - Esgotamento do espaço de endereçamento IPv6
 - Escassez de endereços de classe B
 - Elevado crescimento das tabelas de routing
 Classless Inter-Domain Routing

Súper-endereçamento e CIDR (cont.)

- Agregação de redes de classe C contíguas (super-netting)
 - utilização eficiente do espaço de endereçamento
 - agregação de várias entradas das tabelas de routing
 - as decisões de encaminhamento deixam de ser feitas com base em classes e passam a ser feitas com base na máscara de rede

Súper-endereçamento e CIDR (cont.)

Resolução de endereços IP

- Os endereços IP têm que ser transformados em endereços físicos com significado para a tecnologia de rede subjacente
- Numa rede Ethernet, esse processo é levado a cabo pelo protocolo ARP – Addresss Resolution Protocol (RFC826)
- O processo inverso é efectuado pelo RARP (RFC 903)

Resolução de endereços IP (cont.)

- Funcionamento básico do ARP:
 - 1. Sempre que é necessário enviar um pacote para determinado endereço IP é consultada uma tabela de ARP, para verificar se existe informação de mapeamento entre o end. IP pretendido e o endereço físico
 - 2. Se não existir mapeamento, o protocolo ARP envia um broadcast para a rede a solicitar o mapeamento
 - 3. A máquina com o endereço IP pretendido responde ao pedido ARP, indicando o seu endereço físico, que será usado e guardado na tabela de ARP.

Endereços IPv6

- O IPv6 é especificado no RFC 2460
 - Espaço de endereçamento alargado
 - 296 vezes o espaço de endereçamento do IPv4
 - Cerca de 1018 endereços
 - Mais de 1500 endereços por m2 da superfície terrestre
 - Arquitectura de endereçamento: RFC 2373
 - Simplificação do cabeçalho dos pacotes
 - Suporte de cabeçalhos de extensão
 - Capacidade de identificação de fluxos
 - Suporte de mecanismos de segurança

Pacotes IPv6

Obtenção de endereços IP

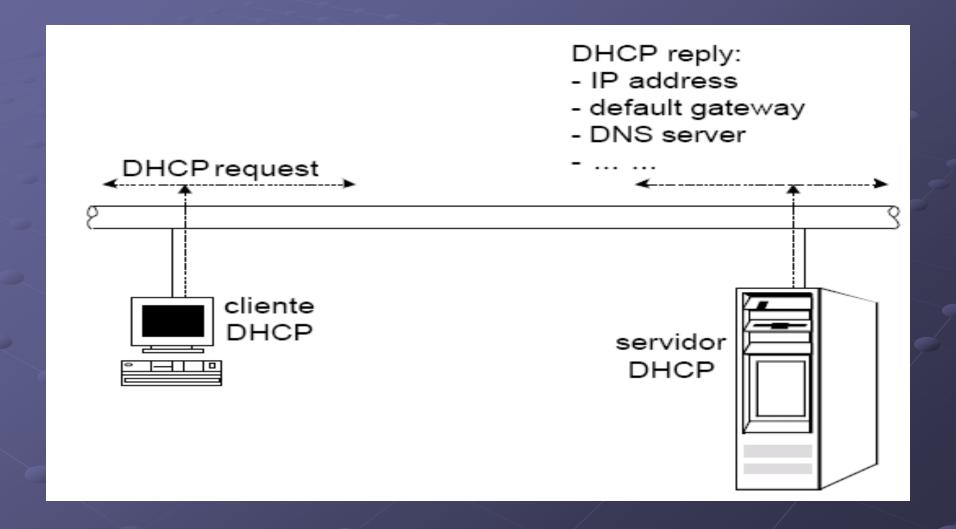
- Até 1998 a atribuição de endereços IP oficiais era feita sob coordenação da IANA (http://www.iana.org/)
- Em 1998 foi formada a ICANN (Internet Corporation for Assigned Names and Numbers, http://www.icann.org/)
 - Gestão de endereços (IPv4, IPv6)
 - Gestão de nomes (espaço de nomeação, DNS)
 - Gestão de números (de protocolos)

Obtenção de endereços IP (cont.)

- No que diz respeito à gestão de endereços, a ICANN delega na ASO (Address Supporting Organization, http://www.aso.icann.org/)
- Por sua vez, a ASO delega nos Regional Internet Registries, RIR)
 - Ásia-Pacífico: APNIC (http://www.apnic.net/)
 - América: ARIN (http://www.arin.net/)
 - Europa: RIPE-NCC (http://www.ripe.net/)

Obtenção de endereços IP (cont.)

- Os objectivos dos RIR são:
 - Utilização eficiente do espaço de endereçamento
 - Agregação de rotas por recurso a CIDR
 - Fornecimento de serviços de registo de endereços
- Os RIR são, basicamente, associações de ISPs que agem como entidades de registo local (Local Internet Registries, LIR)
- A lista dos LIR que operam em Portugal pode ser obtida em http://www.ripe.net/lir/registries/indices/PT.html


Atribuição de endereços LAN

- Configuração manual
 - Simples
 - Não necessidade de servidores de atribuição de endereços
 - Obriga a configuração manual de clientes e servidores
 - Não exequível em redes grandes ou redes com razoável dinâmica de utilizadores
 - Na prática, impede a mobilidade de utilizadores

Atribuição de endereços LAN

- Configuração automática
 - DHCP (Dynamic Host Configuration Protocol)
 - - Definido no RFC 2131
 - Obtenção de informação de configuração de clientes através da rede
 - Endereço IP
 - Servidor de DNS
 - Gateway (router)
 - Outra informação
 - Baseado no BOOTP (Boot Protocol), usado para atribuição de endereços IP a clientes diskless

Funcionamento básico do DHCP

Network Address Translation

- Em certos casos, a atribuição de endereços IP oficiais é desnecessária
 - Redes não ligadas à Internet
 - Máquinas de intranets ligadas ao exterior por firewalls
- O NAT (RFC 1918) tem por principal motivação protelar o esgotamento do espaço de endereçamento do IPv4
 - Colocar redes inteiras por detrás de um conjunto reduzido de máquinas com endereços oficiais

Network Address Translation

Network Address Translation

 O RFC 1918 define três espaços de endereçamento privados, livremente utilizáveis:

- 10.0.0.0 a 10.255.255.255 (uma Classe A)
- 172.16.0.0 a 172.31.255.255 (dezasseis redes de classe B)
- 192.168.0.0 a 192.168.255.255 (256 redes de classe C)

- COMER, Douglas, Internetworking with TCP/IP, Volume I Principles, Protocols and Architectures, Prentice-Hall, 1995.
- KARRENBERG, Daniel, ROSS, Gerard, WILSON, Paul, NOBILE, Leslie, Development of the Regional Internet Registry System, The Internet Protocol Journal, Cisco Systems, http://www.cisco.com/ipj, Vol. 4, no 4, Dezembro 2001.
- MAUFER, Thomas, IP Fundamentals, Prentice-Hall, 1999.
- MONTEIRO, Edmundo, BOAVIDA, Fernando, Engenharia de Redes Informáticas, 4ª edição, FCA – Editora de Informática, Maio 2002.

- RFC 1174, IAB recommended policy on distributing internet identifier assignment and IAB recommended policy change to internet "connected" status, V. G. Cerf, Internet Engineering Task Force, 1990.
- RFC 1918, Address Allocation for Private Internets, Y. Rekhter, B., Moskowitz, D. Karrenberg, G. J. de Groot, E. Lear, Internet Engineering Task Force, 1996.
- RFC 2050, Internet Registry IP Allocation Guidelines, K. Hubbard, M. Kosters, D. Conrad, D. Karrenberg, J. Postel, Internet Engineering Task Force, 1996.
- RFC 2131, Dynamic Host Configuration Protocol, R. Droms, Internet Engineering Task Force, 1997.

- RFC 2373, IP Version 6 Addressing Architecture, R. Hinden, S. Deering, Internet Engineering Task Force, 1998.
- RFC 2460, Internet Protocol, Version 6 (IPv6) Specification, S. Deering, R. Hinden, Internet Engineering Task Force, 1998.
- SHAH, Steve, Linux Administration A Beginner's Guide, Osborne/McGraw-Hill, 2000.
- STEVENS, Richard, TCP/IP Illustrated, Volume 1 The Protocols, Addison Wesley, 1994.