Capítulo 9: Gerenciamento de Redes

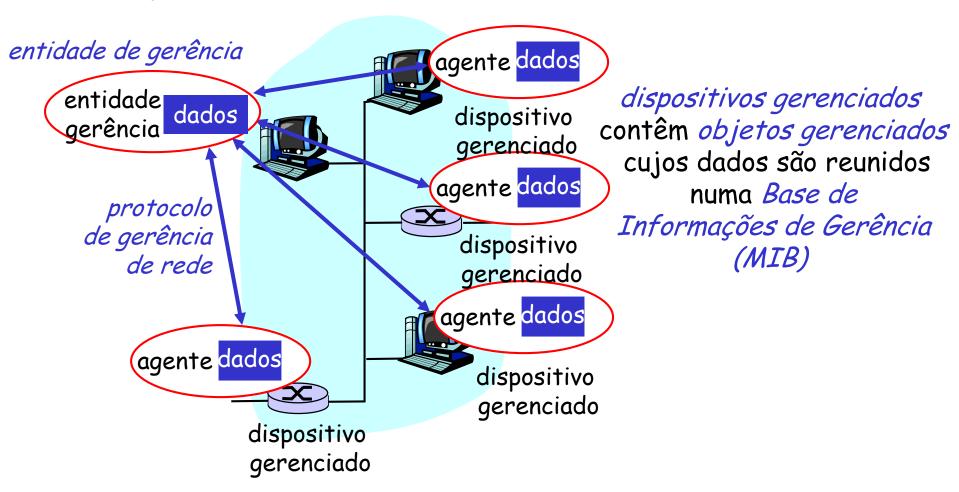
Objetivos do capítulo:

- □ introdução ao gerenciamento de redes
 - motivação
 - componentes principais
- Ambiente de gerenciamento de redes da Internet
 - MIB (management information base): base de informações de gerenciamento
 - SMI: linguagem de definição dos dados
 - SNMP: protocolo para a gerência de rede
 - o segurança e administração
- □ serviços de apresentação: ASN.1

Capítulo 9: roteiro

- □ O que é gerência de redes?
- Arcabouço de gerenciamento padrão da Internet
 - Estruruta das Informações de Gerenciamento: SMI -Structure of Management Information
 - Base de Informações de Gerência: MIB Management Information Base
 - Operações do Protocolo e Mapeamentos de Transporte do SNMP
 - Segurança e Administração
- □ ASN.1

O que é Gerência de Redes?


- □ Sistemas autônomos (i.é., "rede"): 100s ou 1000s de componentes de hw/sw interagindo
- outros sistemas complexos que necessitam de monitoração e controle:
 - o aeronave
 - o usina nuclear
 - Outros?

"Gerência de rede inclui a instalação, integração e coordenação de elementos de hardware, software e humanos para monitorar, testar, checar, configurar, analisar, avaliar e controlar a rede e recursos destes elementos para atingir os requisitos de tempo real, desempenho operacional e Qualidade de Serviço a um custo razoável."

Infra-estrutura para a gerência de rede

definições:

Padrões de Gerência de Rede

CMIP da OSI

- □ Common Management Information Protocol
- projetado nos anos 80: padrão unificador de gerência de rede
- padronização demasiado lenta

- SNMP: Simple Network

 Management Protocol
- □ Raízes na Internet (SGMP)
- começou simples
- □ rapidamente instalado e adotado
- crescimento: tamanho, complexidade
- Atualmente: SNMP v3
- padrão de fato de gerência de rede

Capítulo 9: roteiro

- O que é gerência de redes?
- Arcabouço de gerenciamento padrão da Internet
 - Estruruta das Informações de Gerenciamento: SMI -Structure of Management Information
 - Base de Informações de Gerência: MIB Management Information Base
 - Operações do Protocolo e Mapeamentos de Transporte do SNMP
 - Segurança e Administração
- □ ASN.1

Visão geral do SNMP: 4 partes fundamentais

- Management information base (MIB):
 - o repositório distribuído de dados de gerência de rede
- □ Structure of Management Information (SMI):
 - linguagem de definição de dados para objetos da MIB
- □ protocolo SNMP
 - o transfere informações e comandos sobre objetos entre o gerenciador e o elemento gerenciado
- □ recursos de segurança e administração
 - o principal melhoria no SNMPv3

SMI: linguagem de definição dos dados

<u>Finalidade:</u> definir bem e sem ambigüidade a sintaxe e semântica dos dados de gerência

- □ tipos básicos de dados:
 - Formato genérico dos dados
- TIPO DO OBJETO
 - tipo dos dados, status, semântica do objeto gerenciado
- □ IDENTIDADE DO MÓDULO
 - agrupa objetos relacionados em módulos MIB

Tipos Básicos de Dados

INTEGER

Integer32

Unsigned32

OCTET STRING

OBJECT IDENTIFIED

IPaddress

Counter32

Counter64

Guage32

Tie Ticks

Opaque

MIB SNMP

Um módulo MIB é especificado pela SMI como: MODULE-IDENTITY (100 MIBs padronizadas, mais proprietárias) MODULE OBJECT TYPE: OBJECT TYPE **OBJECT TYPE:** objetos especificados via construção OBJECT-TYPE da SMI

SMI: exemplos de objetos e módulos

OBJECT-TYPE: ipInDelivers

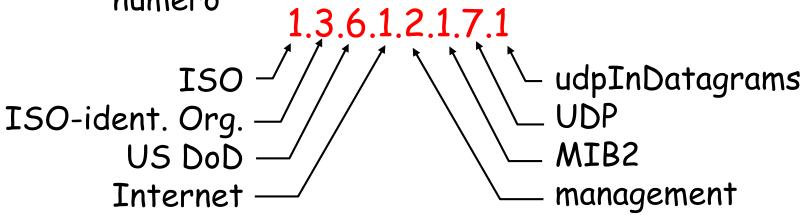
```
ipInDelivers OBJECT TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Número total de
datagramas de entrada que
são entregues com sucesso
aos protocolos de usuários do
IP (incluindo ICMP)"
::= { ip 9}
```

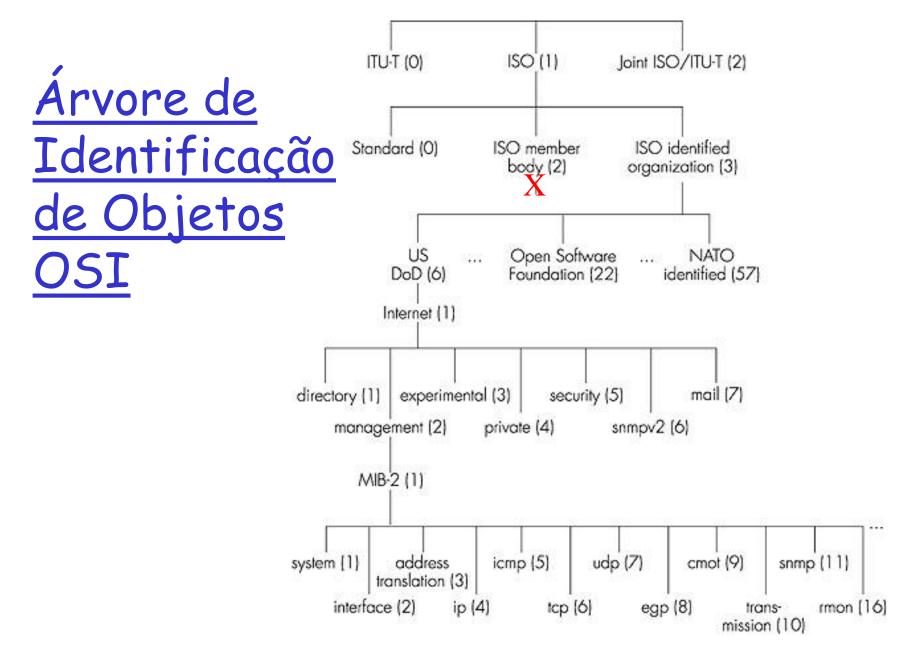
MODULE-IDENTITY: ipMIB

```
ipMIB MODULE-IDENTITY
 LAST-UPDATED "941101000Z"
 ORGANIZATION "IETF SNPv2
       Working Group"
 CONTACT-INFO
  " Keith McCloghrie
 DESCRIPTION
  "The MIB module for managing IP
  and ICMP implementations, but
  excluding their management of
  IP routes."
 REVISION "019331000Z"
::= \{mib-2 48\}
```

Exemplo de MIB: módulo UDP

Object ID	Nome	Tipo	Comentários
1.3.6.1.2.1.7.1	UDPInDatagrams	Counter32	número total de datagramas entregues neste nó
1.3.6.1.2.1.7.2	UDPNoPorts	Counter32	número de datagramas
			com app destino inexistente
1.3.6.1.2.1.7.3	UDInErrors	Counter32	número de datagramas não entregues por outras razões
1.3.6.1.2.1.7.4	UDPOutDatagrams	s Counter32	número de datagramas enviados
1.3.6.1.2.1.7.5	udpTable	uso por	uma linha para cada porta em uma aplicação, fornece o da porta e o ço IP


Identificação no SNMP

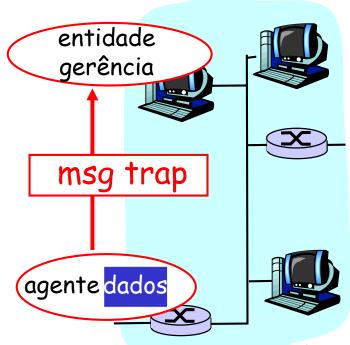

<u>pergunta</u>: como identificar cada possível objeto padrão (protocolo, dados, mais..) em cada possível padrão de rede??

resposta: Árvore de Identificação ISO:

o identificação hierárquica de todos os objetos

 cada ponto de ramificação possui um nome, um número

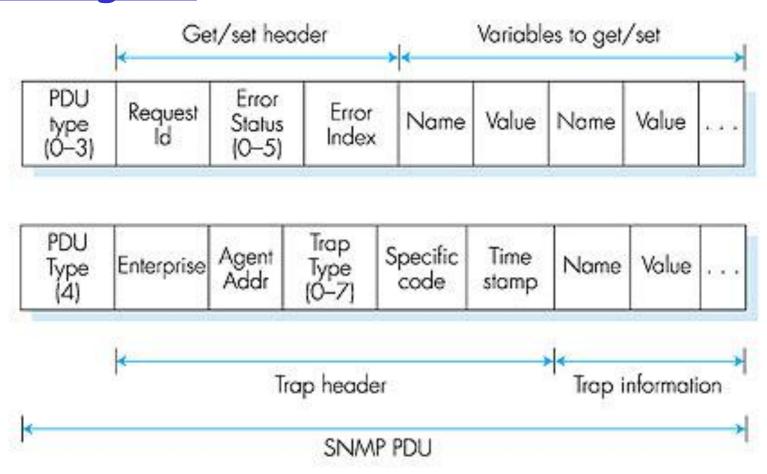
Confira em www.alvestrand.no/harald/objectid/top.html


protocolo SNMP

Duas formas de transportar info das MIBs e comandos.

Dipositivo Gerenciado.

Modo pedido/resposta


Dispositivo Gerenciado

modo interupção

<u>protocolo SNMP: tipos de</u> <u>mensagens</u>

<u>Tipo da Mensagem</u>	<u>Função</u>		
GetRequest GetNextRequest GetBulkRequest	Mgr-to-agent: "get me data" (instance,next in list, block)		
InformRequest	Mgr-to-Mgr: here's MIB value		
SetRequest	Mgr-to-agent: set MIB value		
Response	Agent-to-mgr: value, response to Request		
Trap	Agent-to-mgr: inform manager of exceptional event		

<u>protocolo SNMP: formatos das</u> <u>mensagens</u>

<u>segurança e administração do</u> SNMP

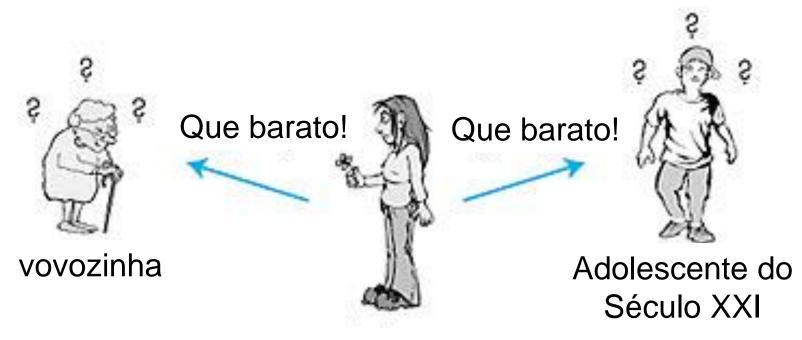
- criptografia: mensagem SNMP cifrada com DES
- □ autenticação: calcula, envia MIC(m,k): calcula hash (MIC) em toda a mensagem (m), chave secreta compartilhada (k)
- □ proteção contra reprodução: usa nonce
- controle de acesso baseado em visões
 - o entidade SNMP mantém bd de direitos de acesso, políticas para diversos usuários
 - o próprio db é acessível como um objeto gerenciado

Capítulo 9: roteiro

- O que é gerência de redes?
- □ Arcabouço de gerenciamento padrão da Internet
 - Estruruta das Informações de Gerenciamento: SMI -Structure of Management Information
 - Base de Informações de Gerência: MIB Management Information Base
 - Operações do Protocolo e Mapeamentos de Transporte do SNMP
 - Segurança e Administração
- O problema da apresentação: ASN.1

O problema da apresentação

P: uma cópia perfeita de memória a memória resolve o "problema de comunicação"?

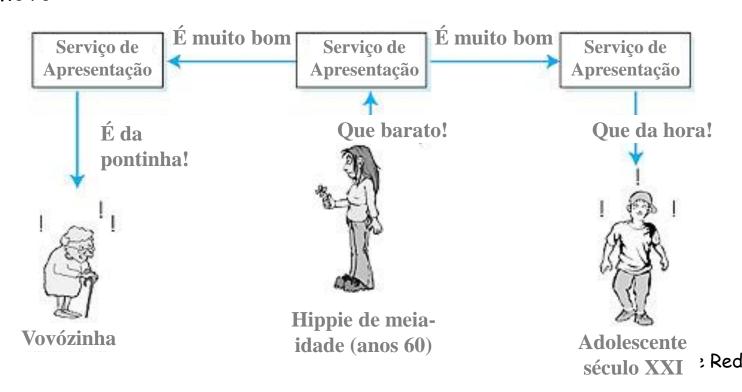

R: nem sempre!

Formato do host 1

Formato do host 2

<u>problema</u>: diferentes formatos dos dados, convenções de armazenamento

Um problema de apresentação da vida real:


Hippie de meia idade

<u>Problema da apresentação: soluções em</u> <u>potencial</u>

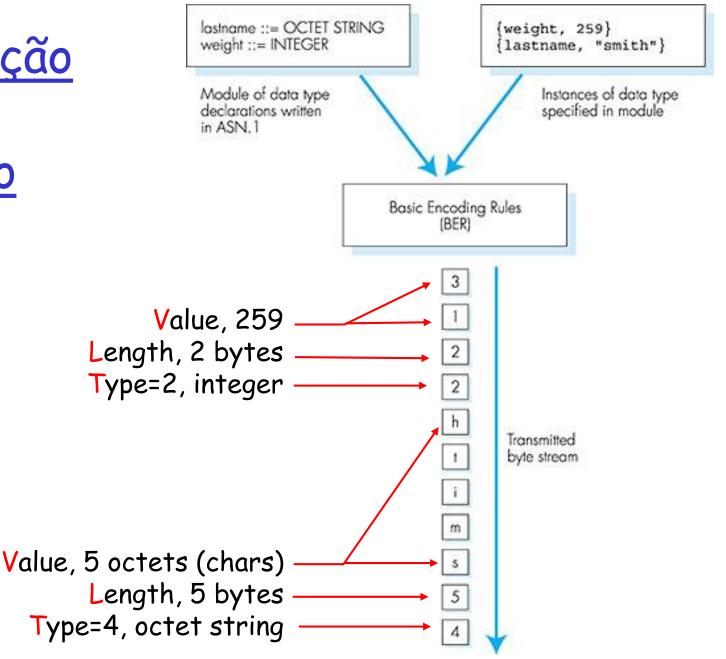
- 1. Transmissor obtém o formato do receptor. Transmissor traduz para o formato do receptor. Transmissor envia.
 - Analogia da vida real?
 - prós e contras?
- 2. Transmissor envia. Receptor obtém o formato do transmissor. Receptor traduz para o formato local do receptor
 - Analogia da vida real?
 - prós e contras?
- 3. Transmissor traduz para formato independente do host. Envia. Receptor traduz para o formato local do receptor.
 - Analogia da vida real?
 - prós e contras?

Resolvendo o problema da apresentação

- 1. Traduza o formato do host local para um formato independente do host
- 2. Transmita os dados no formato independente do host
- 3. Traduza o formato independente do host para o formato do host remoto

ASN.1: Abstract Syntax Notation 1

- □ Padrão ISO X.680
 - usado extensivamente na Internet
 - como comer vegetais, sabendo que "lhe faz bem"!
- tipos de dados definidos, construtores de objetos
 - o como o SMI
- □ BER: Basic Encoding Rules
 - especifica como objetos de dados definidos com o ASN.1 serão transmitidos
 - cada objeto transmitido usa a codificação TLV (Type, Length, Value)


Codificação TLV

Idéia: os dados transmitidos são autoidentificáveis

- T: tipo dos dados, um dos tipos definidos pela ASN.1
- <u>L</u>: comprimento (*length*) dos dados em bytes
- V: valor dos dados, codificado de acordo com o padrão ASN.1

er

codificação TLV: exemplo

Gerenciamento de redes: resumo

- □ Gerenciamento de rede
 - Extremamente importante: 80% do "custo" da rede
 - ASN.1 para descrição dos dados
 - Protocolo SNMP como uma ferramenta para transportar a informação
- □ Gerenciamento de rede: mais arte do que ciência
 - O que medir/monitorar?
 - Como responder a falhas?
 - Orrelação/filtragem de alarmes?