
LibsensorPy: An Extendable Python Library To Manipulate
Sensors Coupled To The Raspberry Pi

Edivaldo M. F. de Jesus Jr
∗

Instituto Federal da Bahia
Rua Emídio dos Santos, S/N

Barbalho, Salvador Bahia
juniorug@gmail.com

Manoel C. M. Neto
†

Instituto Federal da Bahia
Rua Emídio dos Santos, S/N

Barbalho, Salvador Bahia
manoelnetom@ifba.edu.br

ABSTRACT
The convergence of radio technologies, microprocessors and
personal digital electronic devices is leading to the concept of
ubiquitous computing in which intelligent, mobile and sta-
tionary devices, coordinate with each other to provide for
users immediate and universal access to new services trans-
parently, aimed at increasing human capabilities. This work
is intended to be inserted in this context and aims to define,
implement and validate the design and implementation of
an extensible Python library for manipulating sensors/ac-
tuators coupled to the Raspberry Pi using the raspberry-
GPIO-python module. The library, called libsensorPy, uses
Abstract Factory pattern to ensure sensors/actuators and
events from the same family being used in conjunction with
guaranteed way. On other platforms, such as Arduino, APIs
provide libraries that encapsulate the complexity of imple-
mentation and offer only the interface to use. These libraries
do not yet exist formally for those who want to use Python
as development language applied to the Raspberry Pi. This
project also presents the results obtained using some of the
implemented sensors, system modeling and results described
and analyzed.

Keywords
Ubiquitous Computing, Internet of Things, Raspberry Pi,
Sensor, Python.

Introduction
The Ubiquitous Computing (UbiComp) in its several rami-
fications and applications, is treated by many as the twenty-
first century’s new paradigm of computing. UbiComp is the
area of computing that studies the coupling of physical world
to the world of information and provides an abundance of

∗Student from the course of Analysis and Systems Develop-
ment (ADS).
†Ph.D. in Computer Science, Professor and Researcher from
the course of Analysis and Systems Development.

services and applications, allowing users, machines, data and
objects of physical space interact with each other seamlessly.
The theme is considered one of the great challenges of re-
search in Computer Science by the National Science Founda-
tion (NSF)[2] and is also present in the report Grandes De-
safios da Pesquisa em Computação no Brasil 2006-2016 [7],
published by the SBC (Brazilian Computer Society - So-
ciedade Brasileira de Computação).

Researches on ubiquitous computing are being held on topics
such as: basic access to any wireless device, mobility sup-
port on the network in a transparent manner, safety, context
treatment, efficient use of energy, presentation of multime-
dia content, among others. This work is focused on building
intelligent interactive environments. In these environments,
the fundamental idea is to create ways to avoid the user need
to go to the computer/device, allowing many of these work-
ing at a distance. The use of platforms to integrate devices
that make up these environments is one of the key points to
create it. Currently there are some options to fill this gap.
This text emphasizes one: the project Raspberry Pi [44, 49].

Raspberry Pi(RPi) is a widely used platform for profes-
sionals who are interested in the field of ubiquitous applica-
tions. It provides basic interfaces for creating small projects
and/or for those who must be fed by battery. The platform
allows the use high-level programming languages that are
quite widespread as C/C ++, Python and Java. The Rasp-
berry allows the development of a range of projects. For
example, home automation (turn on and off electrical de-
vices, remote control for TV, Air-conditioners, etc.), eBook
and Audiobook readers and so on.

A brief search about how to access the Raspberry Pi bus
will bring a lot of papers in Python. Which incidentally, in-
troduce the acronym of the device name (Pi from Python).
However, any library that abstracts the details of wiring a
sensor or actuator to the Raspberry allowing the user takes
care just in read the data already processed and/or con-
verted will not be found.

The developer must have a degree of experience that can be
considered basic to a professional, but advanced for those
who are not.

This paper is structured as follow:
Section 1 present several technologies involved in the prepa-
ration of this article, aimed to introduce important concepts

of Computer area in which the context of this project is in-
serted. Section 2 shows correlated works. Section 3 presents
details of the executed implementation. The last section
presents the conclusions.

1 THEORETICAL BACKGROUND
In this section the main concepts studied are presented,
which provided subsidies for the development of the pro-
posed project.

1.1 General Context
The term Ubiquitous Computing was first defined by Mark
Weiser [46] in the late 80. At this time, Weiser predicted
an increasing in functionality and availability of computing
services to end users and, on the other hand, he predicted a
decreased visibility of these services. For Weiser, the com-
puting would not be exclusive of a PC. He believed in the
future there would be several different devices connected to
each other. At a time when users were using PCs (desktops)
and that knowledge needed to operate a computer, Weiser
bet on a future where the focus of the users would be the
task itself, and not the tool used. In this way, they would
use computers without realizing or require specific technical
knowledge. [47]

+The passage of time has shown Weiser’s bet was right.
For Weiser, [48] evolution of computing has gone through
two ages to reach to ubiquitous computing. The first was
called the age of mainframe, where many people shared the
same computer. The second era was the PC, where each
computer was used by one person. Currently, the evolu-
tion of distributed information systems, the network connec-
tions type options’ expansion, mobile computing and var-
ious types of applications on non-conventional computing
devices, are just some of the examples that can confirm:
Ubiquitous Computing (the third age) is already a reality.
Figure 1 shows a chart with the ages of computing.

Figure 1: Ages of Computing

Terms such as ubiquitous computing, pervasive computing,
nomadic computing, invisible computing, mobile comput-
ing and many others, have been used often interchangeably,
although they differ conceptually and employing different
organization of ideas and management of computer services.

Insofar as each area progresses, these concepts will be bet-
ter understood and its definitions will become clearer. This
section presents the key concepts needed to understand the
UbiComp besides presenting some project examples in the
literature.

1.2 Mobile Computing
Mobile computing is based on the ability of a user to load or
move (physically) computer services wherever it moves. In
this context, the computer becomes an ever-present device
that expands the ability of a user to use the services it of-
fers, regardless of their location. Combined with the ability
to access network, mobile computing has transformed the
computing an activity that can be taken almost anywhere
[27].

An important conceptual limitation of mobile computing is
that the computational model used in most applications does
not change while users are moving. It means a device is not
able to obtain information on the physical context in which
computation occurs, and consequently also can not adapt
to the new context correctly. A solution to accommodate
the changing context would pass to users the responsibility
to monitor and manually configure an application / device
to the extent that it moves. However, this solution is not
well accepted by most users. This limitation was one of the
inspirations for pervasive computing.

1.3 Pervasive Computing
The concept of pervasive computing implies the computer is
embedded invisibly in the environment to the user [26]. In
this conception, the computer has the ability to: i) obtain
environmental information in which it is embedded and ii)
use it to build dynamically computational models that allow
controlling, configuring and tuning application to better suit
the needs of a device or user. For this to be possible, the key
point is the ability of computers be able to act as ”smart”
in the environment where users move. This environment is
usually populated by computational sensors and services.

1.4 Ubiquitous Computing
Ubiquitous is an adjective originated from Latin (ubiquu)
which means ”that is at the same time everywhere”. As can
be seen in figure 2, the UbiComp can be defined as a com-
puter area positioned between Mobile Computing and Per-
vasive Computing [12, 26]. Ubiquitous computing benefits
from the advances in mobile and pervasive computing and
arises from the need to integrate mobility with the function-
ality of pervasive computing. The term ubiquitous comput-
ing will be used here as a junction of pervasive computing
and mobile computing. The justification to perform a dis-
tinction of these terms is a device that is embedded in an
environment, not necessarily is mobile.

Research in ubiquitous computing approach about technolo-
gies and infrastructure that enable deployment of ubiquitous
applications through a number of issues including the follow-
ing:

• How to design hardware and operating systems for sen-
sor platforms?

• How to allow devices to find each other and to use their
services?

2

Figure 2: Ubiquitous Computing: intersection be-
tween pervasive and mobile computing

• How to allow systems involving limited processing re-
sources and energy, to work well?

Generally, ubiquitous applications receive sensor data from
other service providers devices, manage user actions, provide
support mobility and use context information to perform
tasks [15]. A ubiquitous system itself has a set of require-
ments, peculiarities and challenges that influence design, im-
plementation, deployment and evaluation of its project [26].
These are cornerstones of UbiComp and quite different from
those used in development of systems for PC’s. Among these
points, can be cited as an example [26]:

1. Resource-Constrained Devices;

2. Volatile Execution Environments;

3. Heterogeneous Execution Environments;

4. Fluctuating Usage Environments;

5. Invisible Computing;

6. Security and Privacy;

1.5 Internet of Things
The Internet of Things (IoT) is a multidisciplinary field, cov-
ering a wide range of subjects, from purely technical issues
(e.g., routing protocols, semantic queries) to a mixture of
technical and social problems (security, privacy, usability)
as well as social and business topics. The existing Internet
of things applications are potentially diverse. Environmen-
tal and personal health monitoring, monitoring and control
of industrial processes including agriculture, smart spaces,
and smart cities are just some of the examples of IoT appli-
cations [25].

The connection of physical things to the Internet makes it
possible to access remote sensor data and to control physical
world from a distance. The mash-up of captured data with
data retrieved from other sources, e.g., with data that is
contained in the Web, gives rise to new synergistic services
that go beyond services that can be provided by an isolated
embedded system. The Internet of Things is based on this
vision. A smart object, which is the building block of the
Internet of Things, is just another name for an embedded
system that is connected to the Internet [24].

Everyday physical things are enhanced by a small electronic
device to provide local intelligence and connectivity to the
cyberspace established by the Internet. The small electronic

device, a computational component that is attached to a
physical thing, bridges the gap between the physical world
and the information world. A smart object is thus a cyber-
physical system or an embedded system consisting of a thing
(the physical entity) and a component (the computer) that
processes sensor data and supports a wireless communica-
tion link to the Internet [24].

1.6 Hardware
One fundamental requirement for developing ubiquitous sys-
tems is the use of hardware such as sensors, microcontrollers,
communication devices (network cards, Bluetooth, etc.) and
storage, among others. For example, sensors allow transform
use of interactive environments from more transparent inter-
faces. Currently, there are some platforms that allow insert
and control various types of sensors, using of communica-
tion interfaces and storage units. This section presents and
details the main hardware devices available for development
of ubiquitous systems.

1.6.1 Sensors and Actuators
Sensors are devices that allow us to capture information
from the environment in which they are inserted, such as
temperature, pressure, presence, humidity, smoke detector,
light intensity, among others. In general, sensors work trans-
forming parts of a physical quantity into an electrical signal,
which in turn can be interpreted by electronic devices [4].
In other words, sensors are components that allow an elec-
tronic device to interact with real world.

According to [4], when sensors operate directly, transform-
ing one form of energy into another are called transducers.
Sensors where operations occur indirectly alter their prop-
erties, such as resistance, capacitance or inductance, under
the action of physical grandeur so that this change is roughly
proportional. For example, the light sensor LDR (Light-
dependent resistors) vary inversely its resistance the amount
of light falling on it. Thus, when there is a large amount of
light falling on the sensor, they have a very low resistance
and this allows the flow of electric current increases, whereas
when there is little light, they have a high resistance and pre-
vent current flow.

An actuator as well as a sensor is a transducer that con-
verts one form of energy into another, and can also do the
opposite [4]. In other words, rather than just transform
parts of a physical quantity into an electrical signal, it can
transform an electrical signal into a physical quantity such
as motion, magnetism, heat, among others. For example,
relays are electromechanical devices that work with small
power, but are able to control external circuits that involve
high currents. They are basically composed of a coil and a
set of contacts. When a current flows through the coil it cre-
ates a magnetic field that attracts and closes the contacts,
remaining as long as power supply in the coil. As a result,
it allows the passage of energy through the relay.

1.6.2 Arduino
Arduino was created in 2005 by Massimo Banzi and David
Mellis in Italy with the goal of use as an electronic learning
tool and programming for design students, so they would
use in art projects, interactivity and robotics. Electronic

3

learning was expensive: a microcontroller was costing 100
euros. So they decided to make their own board. Sought
employees and thus created an efficient technology, accessi-
ble and compatible with Windows, Mac and Linux [27].

Arduino is a platform that popularizes the concept of free
hardware. In the book Getting Started with Arduino, Mas-
simo Banzi describes the Arduino as a physical open-source
computing platform based on a simple board with input/out-
put pins that implements the Processing language. Consti-
tuted by a microcontroller, this small but powerful board can
be easily programmed via a Universal Serial Bus interface
(USB) and able to build electronic devices and interesting
systems.

Working with construction of a hardware requires much time
and effort, because is necessary to create new circuits, use
various components such as resistors and capacitors and
many welds. Using Arduino board abstracts much of this
construction process, making it simpler, allowing people from
different fields of knowledge being able to build their projects.
The platform is widely used worldwide for offering advan-
tages such as:

• A multi-platform environment that can run all major
operating systems such as Windows, Linux and Ma-
cOS.

• An open-source hardware, i.e., the circuit design is
available so if someone is interested in creating their
own card, just buy the necessary components.

• Hardware cost is low.

• Can be programmable via a USB cable instead of a
serial port. Remember that today’s computers do not
have serial ports.

• It has a development environment with intuitive inter-
face for easy use.

The fact that both the hardware and the Arduino software
be developed in an open, patent-free, allows its projects to be
recreated in different ways. The adoption of open hardware
concept motivates those who create projects to contribute
with functions and libraries for the Arduino. Is knowledge
about knowledge, the same principle of free software.

Note that there is not necessary advanced knowledge in elec-
tronics to use the platform. But for those who are interested
in deepening the knowledge in this area, there are several
available materials that can help, for example, in [21].

1.6.3 BeagleBone
The BeagleBoard is a low-power open-source hardware single-
board computer produced by Texas Instruments in associa-
tion with Digi-Key and Newark element14. The BeagleBone
Black was also designed with open source software develop-
ment in mind, and as a way of demonstrating the Texas In-
strument’s OMAP3530 system-on-a-chip[8]. The board was
developed by a small team of engineers as an educational
board and could be used in colleges around the world to
teach open source hardware and software capabilities. Sold
to the public under the Creative Commons share-alike li-
cense, the board was designed using Cadence OrCAD for

schematics and Cadence Allegro for PCB manufacturing; no
simulation software was used.

BeagleBone is an $89 Manufacturer suggested retail price
(MSRP) credit-card-sized Linux computer that connects to
the Internet and runs software such as Android 4.0 and
Ubuntu. With plenty of I/O and processing power for real-
time analysis provided by an AM335x 720MHz ARM R© pro-
cessor, BeagleBone can be complemented with cape plug-in
boards to augment functionality.

1.6.4 Raspberry Pi
Raspberry Pi is a small computer, approximately with the
size of a credit card. It can be used to do many things
that are done by a common personal computer[18]. In ad-
dition, it can also be used in electronic projects because it
has a hardware interface: The general purpose input/output
port (GPIO). The Raspberry Pi Foundation, creator of the
project, is an educational charity headquartered in the UK
and aims to help and encourage the teaching of computer
science in schools.

This computer came up with intention of reconnecting chil-
dren and youth in computer programming and stimulate the
creation of new projects so there is not only the consumption
of the technology created by the market. While in the 1990s
there was a growth in the number of children and youth
who developed programming skills, starting in the 2000s,
this number started to decline [38].

With the realization that, year by year, students were mov-
ing away from programming and reducing the development
of skills in computer science. The researchers Eben Upton,
Rob Mullins, Jack Lang and Alan Mycrof, from the Com-
puter Laboratory of University of Cambridge had the idea
of creating a platform that would allow to reconcile the pro-
gramming students and handling computers[14]. From 2006
to 2008, early versions of what is now the Raspberry Pi was
developed. From 2008, with the expansion and emphasis
on mobile devices, the devices are becoming more efficient
and cheaper which enabled the launch of the Raspberry Pi
model B to the public in February 2012 for $ 35.

The proposal of the Raspberry Pi is therefore be a low-
cost computer, with the ability to interact with the outside
world through the sensor coupling. As seen previously, it
was thought to be used in the educational environment, in
order to assist and encourage the teaching of programming
and help understand the operation of computers. However,
the Raspberry Pi has been used by people of all ages and
interests in various projects, for example, projects involving
automation, sensing and robotics, games, multimedia, net-
works and servers.

Currently there are three Raspberry Pi models: The model
A, which costs $ 25 and the B and B+ models, which costs
$ 35. As for the price, there is not much difference between
hardware models. The main differences are the amount of
USB ports (1, 2 and 4 in the models A, B and B +, respec-
tively), the Ethernet port (model A does not have) and ram
(256MB on the model A against 512 for the others).

4

Figure 3: Raspberry Pi Components, model B[39]

1.6.4.1 Features

The original RPi is based on the Broadcom BCM2835 sys-
tem on a chip (SoC)[5], which includes an ARM1176JZF-S
700 MHz processor, VideoCore IV GPU[6], and was origi-
nally shipped with 256 megabytes of RAM, later upgraded
(models B and B+) to 512 MB[34]. The system has Secure
Digital (SD) (models A and B) or MicroSD (models A+ and
B+) sockets for boot media and persistent storage[17].

In 2014, the Raspberry Pi Foundation launched the Com-
pute Module, which packages a BCM2835 with 512 MB
RAM and an eMMC flash chip into a module for use as
a part of embedded systems [35]. The Foundation provides
Debian and Arch Linux ARM distributions for download.
Tools are available for Python as the main programming
language, with support for BBC BASIC (via RISC OS im-
age or the Brandy Basic clone for Linux)[23], C, C++, Java,
Perl and Ruby.

Some other features presents on RPI:

• Display Serial Interface Connector (DSI): This connec-
tor receives a flat-ribbon cable of 15 pins and can be
used to communicate with an LCD or organic light-
emitting diode (OLED) display screen;

• Camera Serial Interface(CSI) Connector: This port al-
lows a camera module be directly coupled to the card;

• P2 and P3 connectors: These two rows of connectors
are JTAG connectors for test to Broadcom chip (P2)
and LAN9512 network (P3). Due to the proprietary
nature of Broadcom chipset, these connectors are un-
likely to be of much used;

• Pin Protection: Most of the pins in the header go
directly to the Broadcom chip. Carefully design the
components what can be attached to the pins is very
important as there is a risk of permanently damage

the RPi. Short circuits and wiring mistakes could also
shatter the board, so double check everything. A mul-
timeter is probably going to help a lot here as the de-
veloper can double check wiring before connect to the
RPi.

1.6.4.2 Power Supply

The device is powered by 5v micro USB. Exactly how much
current (mA) the Raspberry Pi requires is dependent on
what the project hook up to it. Purchasing a 1.2A (1200mA)
power supply from a reputable retailer will provide to the
user with ample power to run the Raspberry Pi for most
applications, though may want to get a 2.5A (2500mA) if
necessary to use all 4 USB ports on the Model B without
using an external powered USB hub.

The power requirements of the Raspberry Pi increase as
much as are used the various interfaces on the Raspberry
Pi. The GPIO pins can draw 50mA safely (that is 50mA
distributed across all the pins! An individual GPIO pin can
only safely draw 16mA), the HDMI port uses 50mA, the
camera module requires 250mA, and keyboards and mice
can take as little as 100mA or over 1000mA. Check the power
rating of the devices what are planed to connect to the Pi
and a power supply must be purchased accordingly.

1.6.4.3 Processor

The System on a chip(SoC) used in the first generation
Raspberry Pi is somewhat equivalent to the chip used in
older smartphones (such as iPhone / 3G / 3GS). The Rasp-
berry Pi is based on the Broadcom BCM2835 system on a
chip (SoC)[5], which includes an 700 MHz ARM1176JZF-S
processor, VideoCore IV GPU[6], and RAM. It has a Level
2 cache of 128 KB, used primarily by the GPU. The SoC is
stacked underneath the RAM chip, so only its edge is visible.

1.6.4.4 General Purpose Input/Output

Another important aspect of hardware from Raspberry is
the group of GPIO pins. These pins are programmable
ports to input and output data used to provide an inter-
face between the board and peripherals, microcontroller-
s/microprocessors, sensors, actuators, etc. The GPIO inter-
face is fundamental for building intelligent interactive envi-
ronments and it is the interface between the Raspberry and
the real world. In simple terms, the GPIO pins can be con-
sidered as switches that can be turned on/off.

Similarly to the Arduino, besides the GPIO, the Raspberry
also supports PWM (Pulse Width Modulation), UART (Uni-
versal asynchronous receiver/transmitter) and SPI (Serial
Peripheral Interface). Of the 26 pins available, 17 are re-
served for GPIO and 8 are used for power and ground. Fig-
ure 2.6 shows the GPIO interface. These pins can be used
via code written in a programming compatible language like
Python, Scratch, Java, among others [6]. The GPIO pins
are available on the PCB via a header and allow the Pi to
interface with the real world.

5

1.6.4.5 Inputs and Outputs

The number and options of input and output from a Rasp-
berry Pi depend on the model used. Models RPi A+, B+
and 2B GPIO J8 have 40-pin as pinout. Models A and B
have only the first 26 pins [40]. In this paper will be pre-
sented only the pins available in the model B. The pins are
divided into:

• Digital pin to input or output (programmable) - 17
pins;

• Analog input pins or digital input/output - 6 pins;

• Power pins (gnd, 5V, 3.3V) - 9 pins;

The first item on the list are the useful pins. They are the
ones that are available for a programmer use. Is through
these pins that the Raspberry Pi is coupled to the sensors
to capture environmental information. Among the 17 digi-
tal input/output pins there are 2 pins that match the serial
communication module UART (Universal asynchronous re-
ceiver/transmitter). This module allows communication be-
tween a computer (for example) and the Raspberry Pi (see
Special Pins section). All pins have more than one function,
pins can be input or output, and the roles of each are de-
fined in the code of possible programs that can be run on
the RPi.

1.6.4.6 Digital Inputs

All 17 programmable pins can be used as digital inputs.
When a pin is programmed to function as digital input,
can be used a command that, when executed, performs the
”reading” of the voltage applied to it. Then, after running
this command, the user will know if the pin is in a ”high” or
”low” state (on or off).

From the electrical point of view, the program can tell if
a pin is fed with 0 (zero) or 5 Volts. This function is usually
used to identify whether a button is pressed or a sensor is
capturing some environmental information. Note that the
digital input function delivers only values 0 or 1 (no voltage
or with voltage). How much voltage is being applied to the
pin is not known.

1.6.4.7 Analog Inputs

The Raspberry Pi does not have analog pins as Arduino,
but is possible to use a traditional analog-to-digital con-
verter(ADC) chip connecting to the RPi via SPI or I2C. For
example the Microchip MCP3424 (I2C interface) which has
4 differential inputs. All ADC should work on the RPi, ex-
cept that the timing is not as good as a microcontroller due
to the available Linux versions not being true real-time.

1.6.4.8 Digital outputs

With a digital output is possible only two types of values (0
or 5 volts, 1 or 0, etc.). From a pin programmed as digital
output is possible for example light up an LED, connecting
a relay, trigger a motor, etc. All 17 digital outputs from the
RPi can be programmed.

1.6.4.9 Special Pins

RPi pins have some special characteristics which can be used
from the software functions encoded by a software program-
mer. Are they:

• PWM - Pulse Width Modulation: Treated as analog
output, this pin is actually a digital output that gen-
erates an alternating signal (between 0 and 1) where
the time that the pin is in level 1 (on) is controlled.
It can be used, for example, for engine speed control,
or generate voltages with values controlled by the pro-
gram. For the PWM communication may use pin 12
[3];

• UART - Universal asynchronous receiver/transmitter:
One pin(TxD) is used to transmit and another(RxD)
to receive data in serial asynchronous format. For ex-
ample, to connect a data transmission module via blue-
tooth and allow communication with the Arduino re-
motely. Are reserved for UART pins 15 (RXD receives
data) and 14 (TXD sends data) [19];

• SPI Port - Serial Peripheral Interface: These are pins
that allow synchronous serial communication faster than
UART. They allow for example to connect memory
cards (SD) and many other things. Are used for this
purpose the pins 19 as Master Output, Slave Input
(MOSI), 21 as Master Input, Slave Output(MISO), 23
as Serial Clock(SCLK), 24 as Chip Select0(CE0) e 26
as Chip Select1(CE1) [37];

• I2C Bus - Inter-Integrated Circuit: The I2C bus allows
multiple devices to be connected to the Raspberry Pi,
each with a unique address, that can often be set by
changing jumper settings on the module. To be able to
see which devices are connected to the RPi is very use-
ful as a way of making sure everything is working. Are
used for this purpose pins 3 for Serial Data Line(SDA)
and pin 5 for Serial Clock Line(SCL) [1].

1.7 Software
This section presents all software solutions which are in-
volved with the proposed model.

1.7.1 Operating systems
Raspberry Pi primarily uses Linux-kernel-based operating
systems. The ARM11 chip at the heart of the Pi (pre-Pi
2) is based on version 6 of the ARM. The current releases
of several popular versions of Linux, including Ubuntu [20],
will not run on the ARM11. Run Windows on the origi-
nal Raspberry Pi is not possible, though the new Raspberry
Pi 2 will be able to run Windows 10[9]. The Raspberry Pi
2 currently only supports Ubuntu Snappy Core, Raspbian,
OpenELEC and RISC OS.

The install manager for the Raspberry Pi is NOOBS. The
operating systems included with NOOBS are:

• Archlinux ARM;

• OpenELEC;

• Pidora (Fedora Remix);

• Puppy Linux;

6

• Raspbmc and the XBMC open source digital media
center;

• RISC OS – The operating system of the first ARM-
based computer;

• Raspbian1 [42] – Maintained independently of the Foun-
dation; based on the ARM hard-float (armhf) Debian
7 ’Wheezy’ architecture port originally designed for
ARMv7 and later processors (with Jazelle RCT/ Thum-
bEE, VFPv3, and NEON SIMD extensions), compiled
for the more limited ARMv6 instruction set of the
Raspberry Pi. A minimum size of 4 GB SD card
is required. There is a Pi Store for exchanging pro-
grams[41].

– The Raspbian Server Edition is a stripped ver-
sion with fewer software packages bundled as com-
pared to the usual desktop computer oriented Rasp-
bian[50, 36].

– The Wayland display server protocol enable the
efficient use of the GPU for hardware accelerated
GUI drawing functions[45]. On 16 April 2014
a GUI shell for Weston called Maynard was re-
leased.

– PiBang Linux is derived from Raspbian[30].

– Raspbian for Robots[22] - A fork of Raspbian
for robotics projects with LEGO, Grove, and Ar-
duino.

A list of other operating systems that can be installed on
Raspberry Pi but are not included with NOOBS can be
found in the appendix A2.

1.7.2 WiringPi
WiringPi is a library for access to GPIO interface written
in C. Its use can be performed with C, C ++, or other pro-
gramming languages through wrappers [29]. Wrapper is an
outer layer that extends WiringPi and can be implemented
in different programming languages. This will allow the pro-
grammer to carry out projects not only in C or C ++, but
also in language implemented by the wrapper. There are
wrappers being developed in various languages such as Java,
Ruby and Python. This last will be used in this paper from
the wrapper raspberry-gpio-python.

1.7.3 Python
Python is considered a very high level language because its
syntax is simple and its dynamic typing, besides being in-
terpreted, which makes it great for scripting and robust for
various paradigms including object orientation. With all
these benefits of language, Python still surprises to be an
open source software being available for all major operating
systems[13].

1.7.4 GPIO in Python
The easiest way to control GPIO pins is using the module
RPi.GPIO Python library. The RPi.GPIO module is in-
stalled by default in Raspbian, but if needed, installing the

1Recommended for Raspberry Pi and used in this project
2http://en.wikipedia.org/wiki/Raspberry_Pi#cite_

note-RaspbianServerEdition-78

library is easy if followed the RPi.GPIO Installation Guide3.
Once installed, using the pins is as easy as below:

1 import RPi.GPIO as GPIO

2

3 # Use GPIO numbers, not pin numbers

4 GPIO.setmode(GPIO.BCM)

5

6 # set up GPIO channels - one input and one output

7 GPIO.setup(7, GPIO.IN)

8 GPIO.setup(8, GPIO.OUT)

9

10 # input from GPIO7

11 input_value = GPIO.input(7)

12

13 # output to GPIO8

14 GPIO.output(8, True)

Any RPi.GPIO script must be run as root because this li-
brary needs to access /dev/mem and for safety reasons, is
not recommended to provide access permission to this direc-
tory.

1.7.4.1 GPIO.BOARD and GPIO.BCM

The GPIO.BOARD option specifies that the user are refer-
ring to the pins by the number of the pin in the plug - i.e the
numbers printed on the board (e.g. P1) and in the middle
of the diagram on figure 4.

Figure 4: GPIO pins[33]

The GPIO.BCM option means that the program is referring
to the pins by the ”Broadcom SOC channel” number, these
are the numbers after ”GPIO”in the green rectangles around
the outside of the diagram above.

Unfortunately, BCM numbers changed between versions of
the Model B, and is necessary to work out which one will
be used. So it may be safer to use BOARD numbers if more
than one pi will be used in a project.

1.7.4.2 Pigpio

Pigpio [31] is a Python module for the Raspberry which talks
to the pigpio daemon to allow control of the general purpose
input outputs (GPIOs). Pigpio Python scripts may be run
on Windows, Macs, and Linux machines. Only the pigpio

3http://sourceforge.net/p/raspberry-gpio-python/
wiki/install/

7

http://en.wikipedia.org/wiki/Raspberry_Pi#cite_note-RaspbianServerEdition-78
http://en.wikipedia.org/wiki/Raspberry_Pi#cite_note-RaspbianServerEdition-78
http://sourceforge.net/p/raspberry-gpio-python/wiki/install/
http://sourceforge.net/p/raspberry-gpio-python/wiki/install/

daemon needs to be running on the RPi.

Pigpio provides all the standard gpio features and in ad-
dition it provides hardware timed PWM suitable for servos,
LEDs, and motors and samples/timestamps gpios 0-31 up
to 1 million times per second (default 200 thousand).

2 RELATED WORK
As mentioned in the introduction, there is no specific library
to work with python applied to Raspberry Pi, which pro-
vides a wide variety of sensors but there are some projects
of such libraries for Arduino, and libraries for a particular
set of sensors, which will be shown below.

2.1 PrivateEyePi
PrivateEyePi[32] is a project developed for security/automa-
tion that uses binds programming and electronics. This is
an open source project that is free of charge and can be
copied, shared and modified without restriction. The user
can use the Raspberry Pi or an tiny wireless Arduino to con-
nect sensors and send data over the Internet.

PrivateEyePi Provides tutorials for users explaining how to
build, wire, convert the sensor to a wireless battery oper-
ated IOT device and how to connect it to the Internet. The
project also provides a cloud based alarm system where the
client can group sensors using zones. Zones can be activated
and alarms triggered based on rules that can be defined.

Some sensors, like relay switches, can be controlled through
the Internet. Users can also control the alarm system through
the PrivateEyePi web based dashboard, which allows mon-
itor status of sensors and view temperature and humidity
readings in real time from the Internet. This dashboard can
be seen in figure 5.

Historical information is provided by the analytics module.
The library provides also a sophisticated rules engine that
permit create rules that are processed in real time to create
alerts. Those methods require parameters like sensor val-
ues, time of day, days of week, alarm activated/deactivated
to define rules specific to individual sensors. Sensors that
PrivateEyePi provides PIR motion sensor, DS18B20 digital
thermometer, DHT22 for temperature and humidity read-
ings and a generic water sensor.

2.2 Pingo
Pingo4 is an uniform python API to program devices like
the Raspberry Pi, Arduino, pcDuino, Intel Galileo etc. It’s
an object-oriented API where each board is an instance of
a Board subclass. Every board has a dictionary called pins
which lists all GPIO pins on the board. Each pin is an
instance of a Pin subclass with attributes that users can in-
spect to learn about its capabilities.

To use pingo, the first step is to instantiate a Board. Each
Pingo driver is a concrete board subclass. Two such classes
are pingo.rpi.RaspberryPi and pingo.arduino.ArduinoFirmata.

4http://www.pingo.io/docs/

Figure 5: PrivateEyePi web based dashboard[32]

Pingo can automatically detect the board in most common
cases. pingo.detect.MyBoard() will return an suitable board
instance if the script is running on a supported board. If
Pingo is running on an unsupported machine (eg. a note-
book), it will try to find a connected Arduino using the
Firmata protocol via USB and – if successful – will return a
pingo.arduino.ArduinoFirmata instance.

Once having a board instance, it’s possible to access its pins
through the board.pins dictionary:

1 import pingo

2 from time import sleep

3

4 board = pingo.detect.MyBoard()

5 led_pin = board.pins[13]

6 led_pin.mode = pingo.OUT

7

8 while True:

9 led_pin.hi()

10 sleep(1)

11 led_pin.lo()

12 sleep(1)

2.3 PySerial
The work from [13] describes a library that uses python
called pySerial using serial port to communicate with Ar-
duino mainly, but also with Python running on Windows,
Linux, BSD (possibly any POSIX compliant system), Jython
and IronPython (.NET and Mono). It encapsulates the ac-
cess for the serial port and provides back-ends for Python.
The module named ”serial” automatically selects the appro-
priate back-end.

Features:

• Same class based interface on all supported platforms.

• Access to the port settings through Python properties.

8

http://www.pingo.io/docs/

• Support for different byte sizes, stop bits, parity and
flow control with RTS/CTS(Request to Send/Clear to
Send) and/or Xon/Xoff.

• Working with or without receive timeout.

• File like API with “read” and “write” (”readline” etc.
also supported).

• Files in this package are 100% pure Python.

• The port is set up for binary transmission. No NULL
byte stripping, carriage return-linefeed translation(CR-
LF) etc. (which are many times enabled for POSIX).
This makes this module universally useful.

• Compatible with I/O library (Python 2.6+)

• RFC 2217 client (experimental), server provided in the
examples.

That work [13], describes the use of LM35 (temperature sen-
sor) and a Light Dependent Resistor.

2.4 DHTLib
Arduino DHTLib5 is a library for reading temperature and
humidity from sensors of HDT11’s family, such as DHT11,
DHT21, DHT22, DHT33 e DHT44, applied to Arduino.

The interface supports only one function for reading hu-
midity and temperature from the sensors and store it in two
members of the class. The read() function verifies the check-
sum of the data transmission and it has a time out function.
If there is a checksum error the values of temperature and/or
humidity might still be valid.

The class has 6 read functions read11(PIN), read(PIN) and
readxx(PIN) which have essentially the same interface. They
read the DHT connected to PIN, and fill the two class mem-
bers temperature and humidity. Multiple reads from these
class members (Humidity and Temperature) will return the
same (previous) values until a new read is done.

In case of a DHTLIB ERROR TIMEOUT, humidity and
temperature will get the value DHTLIB INVALID VALUE.
In case of DHTLIB ERROR CHECKSUM the values of hu-
midity and temperature are left unchanged as it is impos-
sible to determine which byte failed in the checksum. The
programmer will decide what to do. One can compare with
previous value, but better reread the sensor.

2.5 NewPing
NewPing Library for Arduino6 is an ultrasonic sensor library
for Arduino that was developed to work with sensors SR04,
SRF05, SRF06, DYP-ME007 and Parallax PING)))TM. In-
tended to use with Sketches (Software written using Ar-
duino), the library is written with C++.

Features:
5http://playground.arduino.cc/Main/DHTLib
6https://code.google.com/p/arduino-new-ping/

• Works with many different ultrasonic sensor models:
SRF05, SRF06, DYP-ME007, Parallax PING)))TM and
SR04.

• Option to interface with all but the SRF06 sensor using
only one Arduino pin.

• Doesn’t lag for a full second if no ping echo is received
like all other ultrasonic libraries.

• Ping sensors consistently and reliably at up to 30 times
per second.

• Timer interrupt method for event-driven sketches.

• Built-in digital filter method ping median() for easy
error correction.

• Uses port registers when accessing pins for faster exe-
cution and smaller code size.

• Allows setting of a maximum distance where pings be-
yond that distance are read as no ping ”clear”.

• Ease of using multiple sensors (example sketch that
pings 15 sensors).

• More accurate distance calculation (cm, inches and mi-
croseconds).

• Doesn’t use pulseIn, which is slow and gives incorrect
results with some ultrasonic sensor models.

• Actively developed with features being added and bugs/
issues addressed.

2.6 Adafruit Raspberry Pi Python Code
Adafruit’s Raspberry-Pi Python Code Library7 is the most
closed work with this paper. Written by Limor Fried, Kevin
Townsend and Mikey Sklar under BSD license for control-
ling a variety of Adafruit electronics with a Raspberry Pi,
a growing collection of libraries and example python scripts
are provided.

This library provides a collection of python scripts to work
with sensors, providing classes that can be used to measure
values from the sensor that the class implements.

Despite being a library with a considerable amount of sen-
sors, if the user wants to change the type of sensor in a
project, is necessary review the documentation of the new
sensor to be used because the library does not use a standard
for equivalent sensors.

2.7 Discussions and Observations
As with other platforms, Raspberry Pi allows coupling sev-
eral sensors whose handling can be made from raspberry-
gpio-python or any other API available. On other platforms,
such as Arduino, the APIs provide libraries that encapsulate
the complexity of implementation and offer only the inter-
face to use. These libraries do not yet exist formally for
those who want to use Python as a development language
for Raspberry Pi.

7https://github.com/adafruit/
Adafruit-Raspberry-Pi-Python-Code

9

http://playground.arduino.cc/Main/DHTLib
https://code.google.com/p/arduino-new-ping/
https://github.com/adafruit/Adafruit-Raspberry-Pi-Python-Code
https://github.com/adafruit/Adafruit-Raspberry-Pi-Python-Code

This may be a consequence of run under the Linux kernel
which is not suitable for real time applications, a multitask-
ing O/S and another process may be given priority over the
CPU, causing jitter in the program [28].

The library proposed reconciles the use of an integrated cir-
cuit platform with microcontroller , thereby strengthening
the use of free hardware, aiming to solve problems of a phys-
ical nature, with several components used to the extent that
platform, allowing it to have a greater range of utility, poten-
tiating their functions. Among the components which have
greater relevance are the sensors that capture and process
variations in the environment into electrical signals that are
identified by the circuit platform. With the use of a high-
level programming language make the communication inter-
face between the computer and the microcontroller, captur-
ing data sent to the computer, allowing the user to make the
necessary analysis.

3 LIBSENSORPY
Many small embedded systems exist to collect data from
sensors, analyses the data, and either take an appropriate
action or send sensor data to another system for processing.
One of the many challenges of embedded systems design is
the fact parts that are used today may be out of production
tomorrow, or system requirements may change and may will
be needed to choose a different sensor down the road.

Creating new drivers is a relatively easy task, but integrat-
ing them into existing systems is both error prone and time
consuming since sensors rarely use the exact same units of
measurement. By reducing all data to a single sensors/event
family type and settling on specific, standardized SI units for
each sensor family the same sensor types return values that
are comparable with any other similar sensor. This enables
users to switch sensor models with very little impact on the
rest of the system, which can help mitigate some of the risks
and problems of sensor availability and code reuse.

LibsensorPy is an extensible library, which allows the user
to interact with environment through sensors and actuators
coupled to the Raspberry Pi as well as add new sensors / ac-
tuators and easy way to practice. Often programmers, who
have no knowledge in electronics, and engineers who do not
have programming experience need to create ubiquitous sys-
tems, requiring a lot of work to implement system’s abstrac-
tions, configure logic connections between sensors and the
microcontroller, capture, understand and process the data
in order to make them readable.

With the proposed system, the user only need to worry
about using the data the solution delivery already processed
since the system provides the abstractions of the main neces-
sary resources for the processing and, if desired, inform the
library in which pins the sensors are connected, if the user
does not want to use default configuration of each sensor.
Conversions between units of measure are also provided, fa-
cilitating and universalizing the use of the library.

LibsensorPy provides a simple abstraction layer between
user’s application and the actual sensor Hardware, allowing
to drop in any comparable sensor with only one or two lines

of code to change in the project that uses the library. This
change is essentially in the constructor since the functions to
read data and get information about the sensor are defined
in the family sensor class, e.g. UltrasonicSensor class.

This is important useful for two reasons:

1. Users can use the data right away because it’s already
converted to SI units that is understandable and can
compare, rather than meaningless values like 0..1023.

2. Because SI units are standardized in the sensor library,
users can also do quick sanity checks working with new
sensors, or drop in any comparable sensor if needed
better sensitivity or if a lower cost unit becomes avail-
able, etc.

Light sensors will always report units in lux, pressure sen-
sors will always report units in hPa and so forth, freeing
user up to focus on the data, rather than digging through
the datasheet to understand what the sensor’s raw numbers
really mean. Also the library offer methods to convert the
standard SI to other measurement unit, thus who are using
the library can abstracts these conversions. A sheet of Stan-
dardized SI values and measurable units and conversions for
each sensor can be seen in appendix B.

The purpose of this work is the focus on library’s usabil-
ity and the abstraction from the way this library interacts
with sensors/actuators to capture data, besides contributing
to the open source community and the growing community
of developers for the Raspberry Pi.

The technologies used to develop the tool were basically the
Python language and RPI.GPIO and PigPio modules that
provide connection abstractions to basic pins and the special
pins I2C, UART, SPI and PWM.

To develop this project was adopted the object-oriented anal-
ysis and design (OOAD). OOAD is a popular technical ap-
proach to analyzing, designing an application, system, or
business by applying the object-oriented (OO) paradigm and
visual modeling throughout development life cycles to foster
better stakeholder communication and product quality.

According to the popular guide Unified Process, OOAD in
modern software engineering is best conducted in an it-
erative and incremental way. Iteration by iteration, the
outputs of OOAD activities, analysis models for Object-
oriented analysis (OOA) and design models for Object- ori-
ented design (OOD) respectively, were refined and evolved
continuously driven by key factors like usability and effi-
ciency.

Object-oriented approach is ambitious: it encompasses the
entire software lifecycle. When examining object-oriented
solutions, should be checked the method and language, as
well as the supporting tools, apply to analysis and design as
well as implementation and maintenance. The language, in
particular, should be a vehicle for thought which will help
through all stages of the work. In this context, Python was
essentially fundamental since it provides fully object ori-
ented functionalities that attend the project’s requirements.

10

Using Object-oriented modeling, the work is divided in two
aspects: Modeling dynamic behaviors like events and use
cases, and the modeling of static structures like classes and
components. OOA and OOD were two distinct abstract lev-
els (i.e. the analysis level and the design level) during OOM.
The Unified Modeling Language (UML), a popular interna-
tional standard languages used for object-oriented modeling
was used. The benefits of OOM are:

• Efficient and effective communication:

Users typically have difficulties in understanding compre-
hensive documents and programming language codes well.
Visual model diagrams can be more understandable and can
allow users and stakeholders to give developers feedback on
the appropriate requirements and structure of the system.
A key goal of the object-oriented approach is to decrease
the ”semantic gap” between the system and the real world,
and to have the system be constructed using terminology
that is almost the same as the stakeholders use in everyday
business. Object-oriented modeling is an essential tool to
facilitate this.

• Useful and stable abstraction:

Modeling helps coding. A goal of most modern software
methodologies is to first address ”what” questions and then
address ”how” questions, i.e. first determine the function-
ality the system is to provide without consideration of im-
plementation constraints, and then consider how to make
specific solutions to these abstract requirements, and refine
them into detailed designs and codes by constraints such
as technology and budget. Object-oriented modeling en-
ables this by producing abstract and accessible descriptions
of both system requirements and designs, i.e. models define
their essential structures and behaviors like processes and
objects, which are important and valuable development as-
sets with higher abstraction levels above concrete and com-
plex source code.

Patterns used:

• Abstract Factory;

• Singleton;

• Observer;

• Composite;

In the table 1 are defined the main functional requirements
in order to be able to meet all the objectives proposed by
libsensorPy library. Are characterized as non-functional re-
quirements for the proper functioning of libsensorPy the
items in table 2.

3.1 Architecture of LibsensorPy
The system consists of a module that implements the ab-
stract factory pattern, guaranteeing independence of how
products are created, composed and represented. For that,
the system must be configured with one of multiple product
families (family of sensors). It provides one product class li-
brary: sensors, actuators and events related to the family of
each sensor, but are only revealed their interfaces, not their

Table 1: Functional requirements of libsensorPy
Id Functional Requirements Actor
RF01 Collect data sent by the sensors via the

GPIO pins;
Library

RF02 Manipulate data sent by the sensors,
turning them into readable data to the
user;

User

RF03 Allow the user to set the pins to be
used for connection between sensor and
Raspberry;

User

RF04 Allow the creation of composite sen-
sors, enabling a single sensor to mea-
sure more than one physical greatness;

User

RF05 Allow configuration of a set of condi-
tions (events) that, When met, trigger
an action.

User

Table 2: Non-functional requirements of libsensorPy
Id Non-Functional Requirements Category
RNF01 The library must allow addition

of new sensors/families;
Extensibility

RNF02 The data reported by the appli-
cation must be faithful with pre-
sented in the environment;

Confidence

RNF03 The library should be usable in
any Raspberry Pi model ;

Portability

RNF04 The library will be developed us-
ing Python language;

Software

implementations. Figure 6 shows the main class diagram.

Main components:

• AbstractSensorFactory: Declares an interface for op-
erations that create abstract sensors and events;

• ConcreteFactories: Implement operations to create con-
crete sensors and events;

• AbstractSensor: Declares an interface for sensors;

• AbstractActuator: Declares an interface to the actua-
tors;

• AbstractEvent: declares an interface for the events;

• ConcreteSensors, ConcreteActuators, ConcreteEvents:
Define the concrete objects to be created by the cor-
responding concrete factory and implement Abstract-
Sensor, AbstractActuator and AbstractEvent interfaces
respectively.

A single instance of the concrete factory is created at run-
time, using the Singleton pattern. This factory creates prod-
ucts with a particular implementation. To create other prod-
ucts from a different family, one should use a different fac-
tory. The concrete factory class being used appears only
once in the application, facilitating changes. The product
family changes all at once, promoting consistency across
products, ensuring used objects are all of the same family,
represented by the concrete factory being used.

11

Figure 6: Class diagram

Due to some sensors belong to more than one family (mea-
sure more than one physical quantity), the library allows
the use of composite-type sensors composed of basic sen-
sors. This ability is facilitated by Python feature that al-
low multiple inheritance. For example, the DHT11 sensor
is capable of measuring temperature and humidity so, were
then created three sensors: Two basic sensor from distinct
families (DHT11Temperature to measure temperature and
DHT11Humidity to the family of humidity sensors) and a
composite sensor (DHT11Composite) that aggregates the
two basic sensors. The idea of the separation of basic and
composite sensors is to allow the creation of lighter objects,
if the user just want a sensor that measures only a physical
quantity. The composite pattern structure allows basic and
composite sensors being viewed by the user in the same way.
This structure can see in figure 7.

The interactions between the user and the library are de-
scribed in the use case diagram in figure 10. The sequence
diagram for the creation and capture of data by the sensor
can be seen in figure 12.

3.1.1 Architectural Style
The libsensorPy presents characteristics of three architec-
tural styles:

• Traditional, influenced by programming language: OO;

• Based on Implicit Invocation: Event Based;

• Layered Style: Virtual Machine.

The traditional style adopted reflects the basic relationships
of organization and control flow between components pro-
vided by Python language. The only provided structure is
a set of objects whose lifetime varies according to its uses.
This library uses connectors type procedure call and event.
Procedure call connectors model the control flow by invo-
cation techniques and perform data transfer between com-
ponents involved through the use of parameters. Examples
of procedure call connectors include functions, procedures,
object oriented methods, callback and system calls.

The event-based style is an architectural style based on im-
plicit invocation that provides an indirect interaction be-
tween loosely coupled components facilitating the adapta-
tion and improving system scalability. The components of
the Event type (TemperatureEvent, SmokeEvent, etc.) com-
municate only via events transmitted by an event connector.
This connector then relays the events for all components of
the Observer type showing interest in the event in question
(Observer pattern), thereby improving the efficiency of dis-
tribution of events.

Virtual Machine architectures have the goal of achieving
the quality of portability. This software style simulate some
functionality that is not native to the hardware and/or soft-
ware on which it is implemented.

12

Figure 7: Composite class diagram

The Virtual Machine style is applied between the hardware
and the libsensorPy library, using procedure calls as con-
nectors between the layers. This architectural style reduces
complexity, improves modularity, reusability, maintainabil-
ity. The system has thus the layers:

• Physical: GPIO, sensors, actuators and power supply.

• Operating System

• RPi.GPIO

• LibsensorPy

• User applications

Figure 8: Architecture of LibsensorPy

3.1.2 Architectural Pattern

Figure 9: Communication between layers

This project was developed under the architectural pattern
Sense-Compute-Control (SCC). This pattern is typically used
in the structuring of embedded control applications. Second
[43], a Sense/Compute/Control (SCC) application is one
that interacts with the physical environment. Such applica-
tions are pervasive in domains such as building automation,
assisted living, and autonomic computing. SCC applications
can be defined according to an architectural pattern involv-
ing four kinds of components, organized into layers [16]:

13

Figure 10: Use Case diagram

1. Sensors at the bottom, which obtain information about
the environment;

2. Then context operators, which process this informa-
tion;

3. Then control operators, which use this refined infor-
mation to control;

4. Actuators at the top, which finally impact the envi-
ronment

Figure 11: Sense-Compute-Control environment[10]

Each layer corresponds to a separate class of components:

• Sensors send information sensed from the environment
to the context operator layer through data sources.

Sensors can both push data to context operators and
respond to context operator requests. The term ”sen-
sor”is used both for entities that actively retrieve infor-
mation from the environment, such as system probes,
and entities that store information previously collected
from the environment, such as databases.

• Context operators refine (aggregate and interpret) the
information given by the sensors. Context operators
can push data to other context operators and to con-
trol operators. Context operators can also respond to
requests from parent context operators.

• Control operators transform information given by the
context operators into orders for the actuators.

• Actuators trigger actions on the environment.

Sensors are proactive or reactive components whereas con-
text operators, control operators and actuators are always
reactive. These properties ensure that SCC applications are
reactive to the environment state. That is, all computation
is initiated by an observer interaction with a sensor.

As the underlying architecture is component-based, the ap-
plication can be fully distributed. To prevent concurrent
handling of events in a component, all interactions of a com-
ponent are queued and executed one at a time, sequentially.

The application follows the five basic principles of design
oriented to objects, called ”SOLID” [11]. Addressed initially
by Robert Martin, in an article called Principles Of Ood,
the author elaborates five-oriented programming techniques
to objects where each technique is one of SOLID letters of
the word. These five principles are:

14

• Single Responsibility Principle;

• Open Closed Principle;

• Liskov Substitution Principle;

• Interface Segregation Principle;

• Dependency Inversion Principle;

Figure 13 shows the library’s structural view.

3.2 What is needed to install LibsensorPy?
Before use LibsensorPy is necessary to configure and enable
SPI and I2C ports on raspperry:

1 sudo apt-get install python-smbus

2 sudo apt-get install i2c-tools

Check /etc/modprobe.d/raspi-blacklist.conf if using Rasp-
bian, and comment ”blacklist i2c-bcm2708” and ”blacklist
spi-bcm2708” by running:

1 sudo nano /etc/modprobe.d/raspi-blacklist.conf

And adding a # (if its not there), on these informations:
”blacklist i2c-bcm2708” and ”blacklist spi-bcm2708”.

For Wheezy or something-other-than-Occidentals, add the
following lines to /etc/modules:

1 i2c-dev

2 i2c-bcm2708

3 spi-bcm2708

Install pigpio:

1 wget abyz.co.uk/rpi/pigpio/pigpio.zip

2 unzip pigpio.zip

3 cd PIGPIO

4 sudo make

5 sudo make install

install pip:

1 sudo apt-get install python-pip

and finally install LibsensorPy:

1 sudo pip install LibsensorPy

3.3 How to extend the library
The Abstract Factory pattern, how it was implemented in
this solution, allows the extension of the library easily, fol-
lowing the open/closed principle, becoming it easy to modify
and avoiding the user application does not suffer from the
impact of these changes. This requires user programming

skills. The user can add new sensors, events and new fac-
tories. To add new sensors, simply, besides implement the
sensor class, create a concrete factory that inherits from the
factory referring to the sensor family to be added and over-
write the createSensor() method, making this method to
create the new sensor, if desired, or call the create method
of the superclass sensor, ensuring system compatibility.

To add a new sensor family just create a new factory that
implements the abstract methods of AbstractSensorFactory
interface. If desired, is possible also to create an abstract
family class for this , if there is not in the library, creating
thus a ”contract”, where attributes are specified, methods
and functions that the concrete sensors classes of this fam-
ily are required to implement .

Follows an example of how to extend the library: The HCSR04
class was implemented to create objects of the ultrasonic
sensor HC-SR04. Being the family of ultrasonic sensors, this
class was created as a subclass of UltrasonicSensor abstract
class, which has the abstract methods distance in cm() and
setup() to be implemented. It has also created a concrete
factory ExtendedUltrasonicSensorFactory, which inherits the
UltrasonicSensorFactory class and overrides the createSen-
sor() method, as seen following:

1 ’’’

2 Created on 29/03/2015

3 @author: Junior Mascarenhas

4 File: hcsr04.py

5 ’’’

6 import RPi.GPIO as GPIO

7 import time

8 from abstractclass.ultrasonicSensor import \

9 UltrasonicSensor

10

11 class HCSR04(UltrasonicSensor):

12 ’’’

13 classdocs

14 ’’’

15

16 def __init__(self, trigger = 18, echo = 27):

17 ’’’

18 Constructor

19 ’’’

20 UltrasonicSensor.__init__(self)

21 self.__distance = ""

22 self.__trigger = trigger

23 self.__echo = echo

24 self.setup()

25

26 def setup(self):

27 GPIO.setmode(GPIO.BCM)

28 GPIO.setwarnings(False)

29

30 def changeSetup(self, trigger, echo):

31 self.__trigger = trigger

32 self.__echo = echo

33

34 def distance_in_cm(self):

35

36 GPIO.setup(self.__trigger,GPIO.OUT)

37 GPIO.setup(self.__echo,GPIO.IN)

15

Figure 12: Sequence diagram

38 GPIO.output(self.__trigger, GPIO.LOW)

39 time.sleep(0.3)

40 GPIO.output(self.__trigger, True)

41 time.sleep(0.00001)

42 GPIO.output(self.__trigger, False)

43

44 while (GPIO.input(self.__echo) == 0):

45 signaloff = time.time()

46

47 while GPIO.input(self.__echo) == 1:

48 signalon = time.time()

49

50 timepassed = signalon - signaloff

51 self.__distance = timepassed * 17000

52 return self.__distance

1 ’’’

2 Created on 29/03/2015

3 @author: Junior Mascarenhas

4 File: extendedUltrasonicSensorFactory.py

5 ’’’

6

7 from abstractclass.abstractSensorFactory \

8 import AbstractSensorFactory

9 from concretefactory.ultrasonicSensorFactory \

10 import UltrasonicSensorFactory

11 from hcsr04 import HCSR04

12

13 class ExtendedUltrasonicSensorFactory\

14 (UltrasonicSensorFactory):

15 ’’’

16 classdocs

17 ’’’

18

19 def __init__(self):

20 ’’’

21 Constructor

22 ’’’

23 @staticmethod

24 def createSensor(sensorType):

25 if (sensorType == "HCSR04"):

26 return HCSR04()

27 else:

28 return super(sensorType)

3.4 Case Study
In this work the case study began with software verifica-
tion tests which consisted of functional tests of LibsensorPy.
These tests were performed as the system was being imple-
mented.

Verification tests are related to the system specification, the
purpose of these tests is to verify the compliance with the li-
brary’s functional requirements. Tests were performed based
on test cases.

Below is presented dht11CompositeExample.py, an example
of how to use the library and these example classes were
used to test the library.

16

Figure 13: LibsensorPy’s structural view

1 ’’’

2 Created on 29/03/2015

3 @author: Junior Mascarenhas

4 File: dht11CompositeExample.py

5 ’’’

6

7 from concretefactory.compositeSensorFactory \

8 import CompositeSensorFactory

9

10 if __name__ == ’__main__’:

11

12 dht11 = CompositeSensorFactory.createSensor\

13 ("DHT11Composite")

14 print ("Temperature in Celsius: " \

15 + dht11.getTemperature() + u"\u00b0" + "C")

16 print ("Temperature in Fahrenheit: " \

17 + dht11.getTemperatureInFahrenheit() +"F")

18 print ("Temperature in Kelvin: " \

19 + dht11.getTemperatureInKelvin() +"K")

20 print ("Humidity: " + dht11.getHumidity() + "%")

Was then given to continue the study validation tests. These
tests were performed after development’s completion of Lib-
sensorPy, and was based on the library’s availability to the
people who are involved in ubiquitous systems development
activities.

This library was presented to a post graduation student in
distributed and ubiquitous computing who are developing
work in this area. The main objective was to determine

whether LibsensorPy meets the user needs.

At the end of the presentation this student were invited to
complete the satisfaction of LibsensorPy’s survey. Figure 15
shows satisfaction survey screen using Google Forms.

The result of the case study was satisfactory. Tested sensors
worked as expected, and the data reported were consistent
with environment. The interviewed, during the case study,
confirmed that LibsensorPy meets the user needs. However,
this students made some notifications about show more use
examples.

The sensors HCSR04, DHT11Temperature, DHT11Humidity
and DHT11Composite were tested. Figure 14 shows the re-
sults obtained. It would be tested more sensors but just
these exemplars were available. The HCSR04 was tested
first with a distant object, and on the second reading was
put the object at fifteen centimeters from the sensor. Just
as a reminder, all sensors implemented but not tested were
developed based on their Datasheet and specifications, as a
guarantee they will probably work as expected.

Analyzing the results obtained, was concluded that the Lib-
sensorPy help the development of ubiquitous systems using
the Raspberry Pi platform and hence can minimize current
problems faced by developers who have little knowledge of
electronics discussed above. However, the suggestions re-
ceived during the case study can be harnessed to the library
improvement in future work.

17

Figure 14: Testing the sensors

4 CONCLUSION AND FUTURE WORK
LibsensorPy8,9 is an open source Python library designed to
facilitate the creation of ubiquitous and embedded applica-
tions that use sensors and actuators to capture and process
environmental data.

Its goal is to simplify the creation of these systems using
the Raspberry Pi and has the advantage of considerably re-
ducing the amount of code lines, as well as increasing ab-
straction of how to use the hardware components.

Its differential in relation to related work presented is the
ease of exchanging physical sensors or actuators with few
changes in the source code, provide in addition to standard
units of measure, other commonly used units. Another Ad-
vantage is allow users to configure events that when met,
trigger an action.

These characteristics abstracts technical and behaviors spe-
cific to that system’s type, using design patterns and follow-
ing the SOLID principles, minimizing the development time
of Ubiquitous applications.

Some suggestions can be seen below:

• Test the sensors that have been implemented but have
not been tested;

• Add new sensors to the library;

5 REFERENCES
[1] Adafruit. Configuring i2c.

https://learn.adafruit.com/

adafruits-raspberry-pi-lesson-4-gpio-setup/

configuring-i2c, September 2014. [Online; accessed
15-March-2015].

[2] Armstrong, J. A., Ferguson, P. A., Gaillard,
M. K., Greenwood, M., Jaskolski, S. V., Jones,
A. K., Langford, G. M., Lubchenco, J., Menger,
E. L., Miller Jr, J. A., et al. National science
foundation.

8http://libsensorpy.com/
9https://pypi.python.org/packages/source/l/

libsensorPy/libsensorPy-0.0.7.tar.gz

[3] Barr, M. Programming Embedded Systems, 2 ed.
O’Relly Media, 10 Fawcett Street, Cambridge, MA
02138, USA, 2006.

[4] Borges, L. P., and de Carvalho Dores, R.
Automação predial sem fio utilizando bacnet/zigbee
com foco em economia de energia. Trabalho de
Graduação em Engenharia de Controle e Automação,
Publicação FT. TG, 06 (2010).

[5] Broadcom. Bcm2835 media processor.
http://www.broadcom.com/products/BCM2835,
September 2012. [Online; accessed 06-May-2014].

[6] Brose, M. Broadcom bcm2835 soc has the most
powerful mobile gpu in the world?
http://www.grandmax.net/2012/01/

broadcom-bcm2835-soc-has-powerful.html, January
2012. [Online; accessed 13-March-2015].

[7] Carvalho, A. d. L., Ponce de Leon, F. d., et al.
Grandes desafios da pesquisa em computação no
brasil–2006–2016. São Paulo: Sociedade Brasileira de
Computação (2006).

[8] Coley, G. Take advantage of open-source hardware.
http:

//www.edn.com/design/systems-design/4313253/

Take-advantage-of-open-source-hardware, 2009.
[Online; accessed 15-March-2015].

[9] Dallas, K. Windows 10 coming to raspberry pi 2.
building apps for windows.
http://blogs.windows.com/buildingapps/2015/02/

02/windows-10-coming-to-raspberry-pi-2/,
February 2014. [Online; accessed 25-March-2015].

[10] Damien Cassou, Émile Balland, C. C. J. L.
Architecture-driven-programming for
sense/compute/control applications.
http://pt.slideshare.net/DamienCassou/

architecturedriven-programming-for-sensecompute/

control-applications, May 2010. [Online; accessed
19-March-2015].

[11] Daniel Pace Schmitz, M. A. P. A. Utilização dos
prinćıpios solid na aplicação de padrões de projeto.
Revista Engenharia de Software Magazine 50 (2006).

[12] de Araujo, R. B. Computação ub́ıqua: Prinćıpios,
tecnologias e desafios. In XXI Simpósio Brasileiro de
Redes de Computadores (2003), vol. 8, pp. 11–13.

18

https://learn.adafruit.com/adafruits-raspberry-pi-lesson-4-gpio-setup/configuring-i2c
https://learn.adafruit.com/adafruits-raspberry-pi-lesson-4-gpio-setup/configuring-i2c
https://learn.adafruit.com/adafruits-raspberry-pi-lesson-4-gpio-setup/configuring-i2c
http://libsensorpy.com/
https://pypi.python.org/packages/source/l/libsensorPy/libsensorPy-0.0.7.tar.gz
https://pypi.python.org/packages/source/l/libsensorPy/libsensorPy-0.0.7.tar.gz
http://www.broadcom.com/products/BCM2835
http://www.grandmax.net/2012/01/broadcom-bcm2835-soc-has-powerful.html
http://www.grandmax.net/2012/01/broadcom-bcm2835-soc-has-powerful.html
http://www.edn.com/design/systems-design/4313253/Take-advantage-of-open-source-hardware
http://www.edn.com/design/systems-design/4313253/Take-advantage-of-open-source-hardware
http://www.edn.com/design/systems-design/4313253/Take-advantage-of-open-source-hardware
http://blogs.windows.com/buildingapps/2015/02/02/windows-10-coming-to-raspberry-pi-2/
http://blogs.windows.com/buildingapps/2015/02/02/windows-10-coming-to-raspberry-pi-2/
http://pt.slideshare.net/DamienCassou/architecturedriven-programming-for-sensecompute/control-applications
http://pt.slideshare.net/DamienCassou/architecturedriven-programming-for-sensecompute/control-applications
http://pt.slideshare.net/DamienCassou/architecturedriven-programming-for-sensecompute/control-applications

Figure 15: LibsensorPy’s satisfaction survey

[13] de Souza, J. J. I., do Nascimento, L. B. P., and
dos Santos Filho, P. R. Arduino e python: Do it
yourself.

[14] Dennis, A. K. Raspberry Pi Home Automation with
Arduino. Packt Publishing Ltd, 2013.

[15] DOESn’t FIt All, O. S. ”innovations in ubicomp
products.”.

[16] Edwards, G., Garcia, J., Tajalli, H., Popescu,
D., Medvidovic, N., Sukhatme, G., and Petrus,
B. Architecture-driven self-adaptation and
self-management in robotics systems. In Software
Engineering for Adaptive and Self-Managing Systems,
2009. SEAMS’09. ICSE Workshop on (2009), IEEE,
pp. 142–151.

[17] Elinux.org. Verified usb peripherals and sdhc cards;.
http://elinux.org/RPi_VerifiedPeripherals, May
2012. [Online; accessed 13-March-2015].

[18] FOUNDATION, R. P. What is a raspberry pi?,.
2014a. http://www.raspberrypi.org/help/
what-is-a-raspberry-pi/, October 2014. [Online;
accessed 04-October-2014].

[19] Gadgetoid. Pinout: Uart.
http://pi.gadgetoid.com/pinout/uart, July 2014.
[Online; accessed 15-March-2015].

[20] Halfacree, G. Raspberry pi review: Eben upton
reveals all. http://www.linuxuser.co.uk/features/
raspberry-pi-interview-eban-upton-reveals-all,
2014. [Online; accessed 25-February-2015].

[21] Henrique B. Filho, O. Componentes eletronicos e
unidades de medida, conceitos basicos.
http://www.hardware.com.br/tutoriais/

componentes-eletronicos-unidades-medida/, 2012.
[Online; accessed 22-September-2014].

[22] Industries, D. A fork of raspbian for robotics
projects with lego, grove, and arduino.
http://sourceforge.net/projects/

dexterindustriesraspbianflavor/, June 2013.
[Online; accessed 25-March-2015].

[23] Jaguar.orpheusweb.co.uk. Brandy basic.
http://jaguar.orpheusweb.co.uk/branpage.html,
July 2005. [Online; accessed 13-March-2015].

[24] Kopetz, H. Real-Time Systems: Design Principles
for Distributed Embedded Applications, 1st ed. Kluwer
Academic Publishers, Norwell, MA, USA, 1997.

[25] Krishnakumar, K., Gubbi, J., and Buyya, R. A
framework for iot sensor data analytics and
visualisation in cloud computing environments.

[26] Krumm, J. Ubiquitous computing fundamentals. CRC
Press, 2009.

[27] Neto, M. C. M. Desenvolvimento de aplicações
ub́ıquas com arduino e raspbery pi.

[28] Oracle. Concurrency in java.
http://docs.oracle.com/javase/tutorial/

essential/concurrency/sleep.html. [Online;
accessed 11-January-2015].

[29] PI, W. Wiring pi - gpio interface library for the
raspberry pi – about. http://wiringpi.com/, October
2014. [Online; accessed 02-October-2014].

[30] Pibanglinux.org. Inspired by crunchbang linux, and
based on raspbian. features the openbox desktop
environment. http://www.pibanglinux.org/, May

19

http://elinux.org/RPi_VerifiedPeripherals
http://www.raspberrypi.org/help/what-is-a-raspberry-pi/
http://www.raspberrypi.org/help/what-is-a-raspberry-pi/
http://pi.gadgetoid.com/pinout/uart
http://www.linuxuser.co.uk/features/raspberry-pi-interview-eban-upton-reveals-all
http://www.linuxuser.co.uk/features/raspberry-pi-interview-eban-upton-reveals-all
http://www.hardware.com.br/tutoriais/componentes-eletronicos-unidades-medida/
http://www.hardware.com.br/tutoriais/componentes-eletronicos-unidades-medida/
http://sourceforge.net/projects/dexterindustriesraspbianflavor/
http://sourceforge.net/projects/dexterindustriesraspbianflavor/
http://jaguar.orpheusweb.co.uk/branpage.html
http://docs.oracle.com/javase/tutorial/essential/concurrency/sleep.html
http://docs.oracle.com/javase/tutorial/essential/concurrency/sleep.html
http://wiringpi.com/
http://www.pibanglinux.org/

2013. [Online; accessed 25-March-2015].

[31] Pigpio. Pigpio, a python module for the raspberry
which talks to the pigpio daemon to allow control of
the general purpose input outputs.
http://abyz.co.uk/rpi/pigpio/python.html,
February 2015. [Online; accessed 25-March-2015].

[32] Privateeyepi.com. A home automation and
monitoring project for raspberry pi.
http://projects.privateeyepi.com/, March 2015.
[Online; accessed 08-March-2015].

[33] Raspberrypi-spy.co.uk. Simple guide to the rpi-gpio
header and pins.
http://www.raspberrypi-spy.co.uk/2012/06/

simple-guide-to-the-rpi-gpio-header-and-pins/,
June 2012. [Online; accessed 25-March-2015].

[34] Raspberrypi.org. Model b now ships with 512mb of
ram. http://www.raspberrypi.org/
model-b-now-ships-with-512mb-of-ram/, October
2012. [Online; accessed 13-March-2015].

[35] Raspberrypi.org. Raspberry-pi compute module
new product. http://www.raspberrypi.org/
raspberry-pi-compute-module-new-product/, May
2012. [Online; accessed 13-March-2015].

[36] Raspberrypi.org. Raspbian wheezy.
http://www.raspberrypi.org/downloads, January
2013. [Online; accessed 25-March-2015].

[37] Raspberrypi.org. Raspberri pi spi.
http://www.raspberrypi.org/documentation/

hardware/raspberrypi/spi/README.md, July 2014.
[Online; accessed 15-March-2015].

[38] RASPBERY PI FUNDATION, b. About us. 2014b.
http://www.raspberrypi.org/about/, October 2014.
[Online; accessed 01-October-2014].

[39] RASPBERY PI FUNDATION, c. Faqs. 2014c.
http://www.raspberrypi.org/help/faqs/, October
2014. [Online; accessed 01-October-2014].

[40] Raspberypi.org. Gpio usage.
https://www.raspberrypi.org/documentation/

usage/gpio/README.md, July 2014. [Online; accessed
15-March-2015].

[41] Raspbian. Introducing the pi store. http://www.
raspberrypi.org/introducing-the-pi-store/,
September 2014. [Online; accessed 25-March-2015].

[42] Raspbian. Raspbian – debian optimized for the
raspberry pi hardware. http://www.raspbian.org/,
September 2014. [Online; accessed 25-March-2015].

[43] Taylor, R. N., Medvidovic, N., and Dashofy,
E. M. Software architecture: foundations, theory, and
practice. Wiley Publishing, 2009.

[44] Trapp, B. Raspberry pi: The perfect home server.
linux j. São Paulo: Sociedade Brasileira de
Computação (May 2013).

[45] Upton, E. Wayland.
http://www.raspberrypi.org/archives/4053, May
2013. [Online; accessed 25-March-2015].

[46] Weiser, M. The computer for the 21st century.
Scientific american 265, 3 (1991), 94–104.

[47] Weiser, M. The world is not a desktop. interactions
1, 1 (1994), 7–8.

[48] Weiser, M., and Brown, J. S. The coming age of
calm technology. In Beyond calculation. Springer,

1997, pp. 75–85.

[49] Wirth, M., and McCuaig, J. Making programs
with the raspberry pi. In Proceedings of the Western
Canadian Conference on Computing Education
(2014), ACM, p. 17.

[50] Yau, L. Raspbian server edition version 2.4. the
rantings and ravings of a madman. http://sirlagz.
net/2013/06/13/raspbian-server-edition-2-4/,
July 2013. [Online; accessed 25-March-2015].

APPENDIX
A Other operating systems
• Xbian– Using the Kodi (formerly XBMC) open source

digital media center;

• openSUSE;

• Raspberry Pi Fedora Remix;

• Slackware ARM – Version 13.37 and later runs on the
Raspberry Pi without modification.

• FreeBSD and NetBSD;

• Plan 9 from Bell Labs and Inferno(in beta);

• Moebius – A light ARM HF distribution based on De-
bian;

• OpenWrt – Primarily used on embedded devices to
route network traffic;

• Kali Linux – A Debian-derived distro designed for dig-
ital forensics and penetration testing;

• Instant WebKiosk – An operating system for digital
signage purposes (web and media views);

• Ark OS – Website and email self-hosting;

• Minepion – Dedicated operating system for mining cryp-
tocurrency;

• Kano OS;

• Nard SDK For industrial embedded systems;

• Sailfish OS with Raspberry Pi 2;

• Tiny Core Linux – a minimal Linux operating system
focused on providing a base system using BusyBox and
FLTK;

• IPFire – a dedicated firewall/router distribution for the
protection of a SOHO LAN;

20

http://abyz.co.uk/rpi/pigpio/python.html
http://projects.privateeyepi.com/
http://www.raspberrypi-spy.co.uk/2012/06/simple-guide-to-the-rpi-gpio-header-and-pins/
http://www.raspberrypi-spy.co.uk/2012/06/simple-guide-to-the-rpi-gpio-header-and-pins/
http://www.raspberrypi.org/model-b-now-ships-with-512mb-of-ram/
http://www.raspberrypi.org/model-b-now-ships-with-512mb-of-ram/
http://www.raspberrypi.org/raspberry-pi-compute-module-new-product/
http://www.raspberrypi.org/raspberry-pi-compute-module-new-product/
http://www.raspberrypi.org/downloads
http://www.raspberrypi.org/documentation/hardware/raspberrypi/spi/README.md
http://www.raspberrypi.org/documentation/hardware/raspberrypi/spi/README.md
http://www.raspberrypi.org/about/
http://www.raspberrypi.org/help/faqs/
https://www.raspberrypi.org/documentation/usage/gpio/README.md
https://www.raspberrypi.org/documentation/usage/gpio/README.md
http://www.raspberrypi.org/introducing-the-pi-store/
http://www.raspberrypi.org/introducing-the-pi-store/
http://www.raspbian.org/
http://www.raspberrypi.org/archives/4053
http://sirlagz.net/2013/06/13/raspbian-server-edition-2-4/
http://sirlagz.net/2013/06/13/raspbian-server-edition-2-4/

B Units and scales
Table 3 shows units and scales provided by LibsensorPy.

Table 3: Units and scales
Sensor Family Default units Other units

provided
Acelerometer G m/s2
Altitude meter(m) Centimeter (cm)
Humidity Percent (%)
Light Lux
Magnetometer micro-Tesla (uT)
Motion
Pressure hectopascal (hPa) psi, bar, mmHg,

N/m2
Temperature Celsius Fahrenheit,

Kelvin
Ultrassonic Centimeter (cm)

C Implemented Sensors
Table 4 shows the list of implemented sensors.

Table 4: List of implemented sensors
Family Sensor Class names Example Script

Acelerometer ADXL345 Adxl345 adxl345Example.py
LSM303D LSM303DAccelerometer lsm303dAccelerometerExample.py

Altitude BMP085 Bmp085Altitude bmp085AltitudeExample.py
Humidity DHT11 DHT11Humidity dht11HumidityExample.py

DHT22 DHT22Humidity dht22HumidityExample.py
Lux TCS34725 TCS34725 TCS34725Example
Magnetometer HMC5883L HMC5883L hmc5883lExample

LSM303D LSM303DMagnetometer lsm303dMagnetometerExample.py
Motion PIR PIR pirExample
Pressure BMP085 BMP085Pressure bmp085PressureExample.py
Temperature BMP085 Bmp085Temperature bmp085TemperatureExample.py

DHT11 DHT11Temperature dht11TemperatureExample.py
DHT22 DHT22Temperature dht22TemperatureExample.py

Ultrassonic HC-SR04 HCSR04 hcsr04Example.py
Parallax Ping ParallaxPing parallaxPingExample.py
SRF04 SRF04 srf04Example.py
SRF05 SRF05 srf05Example.py
URM37 URM37 urm37Example
HY-SRF05 HYSRF05 hysrf05Example

Composite BMP085 BMP085Composite bmp085CompositeExample.py
DHT11 DHT11Composite dht11CompositeExample.py
DHT22 DHT22Composite dht22CompositeExample.py
LSM303D LSM303DComposite lsm303dCompositeExample.py

21

D Raspberry Pi, Models and Specifications
Figure 16 shows all Raspberry Pi’s models and specifica-
tions.

Figure 16: Models and Specifications10

10http://en.wikipedia.org/wiki/Raspberry_Pi

22

http://en.wikipedia.org/wiki/Raspberry_Pi

	THEORETICAL BACKGROUND
	General Context
	Mobile Computing
	Pervasive Computing
	Ubiquitous Computing
	Internet of Things
	Hardware
	Sensors and Actuators
	Arduino
	BeagleBone
	Raspberry Pi

	Software
	Operating systems
	WiringPi
	Python
	GPIO in Python

	RELATED WORK
	PrivateEyePi
	Pingo
	PySerial
	DHTLib
	NewPing
	Adafruit Raspberry Pi Python Code
	Discussions and Observations

	LIBSENSORPY
	Architecture of LibsensorPy
	Architectural Style
	Architectural Pattern

	What is needed to install LibsensorPy?
	How to extend the library
	Case Study

	CONCLUSION AND FUTURE WORK
	REFERENCES
	Other operating systems
	Units and scales
	Implemented Sensors
	Raspberry Pi, Models and Specifications

