USING JAVABEANS
COMPONENTS IN JSP
DOCUMENTS

Topics in This Chapter

e Understanding the benefits of beans
e Creating beans

e Installing bean classes on your server
e Accessing bean properties

e Explicitly setting bean properties

e Automatically setting bean properties from request
parameters

e Sharing beans among multiple servlets and JSP pages

Training courses from the book’s author:
http://courses.coreservlets.com/
* Personally developed and taught by Marty Hall
* Available onsite at your organization (any country)
* Topics and pace can be customized for your developers
* Also available periodically at public venues
* Topics include Java programming, beginning/intermediate servlets
and JSP, advanced servlets and JSP, Struts, [SF/MyFaces, Ajax,
GWT, Ruby/Rails and more. Ask for custom courses!

© Prentice Hall and Sun Microsystems Press. Personal use only.

Chapter

Training courses from the book’s author:
http://courses.coreservlets.com/
* Personally developed and taught by Marty Hall
* Available onsite at your organization (any country)
* Topics and pace can be customized for your developers
e Also available periodically at public venues
* Topics include Java programming, beginning/intermediate servlets
and JSP, advanced servlets and JSP, Struts, JSF/MyFaces, Ajax,
GWT, Ruby/Rails and more. Ask for custom courses!

This chapter discusses the third general strategy for inserting dynamic content in JSP

pages (see Figure 14-1): by means of JavaBeans components.

Simple application or
small development feam.

Complex application or
large development team.

Call Java code directly. Place all Java code in JSP page.
Appropriate only for very small amounts of code. Chapter 11.
Call Java code indirectly. Develop separate utility classes.
Insert into JSP page only the Java code needed to invoke the
utility classes. Chapter 11.

Use beans. Develop separate utility classes structured as
beans. Use jsp:useBean, jsp:getProperty, and
jsp:setProperty to invoke the code. This chapter.

Use the MVC architecture. Have a servlet respond to
original request, look up data, and store results in beans.
Forward to a JSP page to present results. [SP page uses beans.
Chapter 15.

Use the JSP expression language. Use shorthand syntax to
access and output object properties. Usually used in
conjunction with beans and MVC. Chapter 16.

Use custom tags. Develop tag handler classes. Invoke the tag
handlers with XML-like custom tags. Volume 2.

Figure 14-1 Strategies for invoking dynamic code from JSP.

© Prentice Hall and Sun Microsystems Press. Personal use only. 399

q paSeueu U0 UOI)IIS Y, o

dyy je [erLI0)M) JSI Ul suLd

JUI0D"SII[ATISAI0D//

dyy je [eLI0IN) SINI)S U SUBI(Q ULIOJ UO UOIIIIS YT, «

JUI0°SII[AIISAA0D//

93s 9sea[d ‘uorjrULIOUI [EUOI)IPPE IO]

J2EE training from the author: http://courses.coreservlets.com/

m Chapter 14 m Using JavaBeans Components in JSP Documents

14.1 Why Use Beans?

OK, so you already understand the benefit of using separate Java classes instead of
embedding large amounts of code directly in JSP pages. As discussed in Section 11.3
(Limiting the Amount of Java Code in JSP Pages), separate classes are easier to write,
compile, test, debug, and reuse. But what do beans provide that other classes do not?
After all, beans are merely regular Java classes that follow some simple conventions
defined by the JavaBeans specification; beans extend no particular class, are in no
particular package, and use no particular interface.

Although it is true that beans are merely Java classes that are written in a standard
format, there are several advantages to their use. With beans in general, visual
manipulation tools and other programs can automatically discover information about
classes that follow this format and can create and manipulate the classes without the
user having to explicitly write any code. In JSP in particular, use of JavaBeans compo-
nents provides three advantages over scriptlets and JSP expressions that refer to nor-
mal Java classes.

1. No Java syntax. By using beans, page authors can manipulate Java
objects using only XM L-compatible syntax: no parentheses, semi-
colons, or curly braces. This promotes a stronger separation between
the content and the presentation and is especially useful in large
development teams that have separate Web and Java developers.

2. Simpler object sharing. When you use the JSP bean constructs, you
can much more easily share objects among multiple pages or between
requests than if you use the equivalent explicit Java code.

3. Convenient correspondence between request parameters and
object properties. The JSP bean constructs greatly simplify the pro-
cess of reading request parameters, converting from strings, and put-
ting the results inside objects.

14.2 What Are Beans?

As we said, beans are simply Java classes that are written in a standard format. Full
coverage of JavaBeans is beyond the scope of this book, but for the purposes of use in
JSP, all you need to know about beans are the three simple points outlined in the fol-
lowing list. If you want more details on beans in general, pick up one of the many
books on the subject or see the documentation and tutorials at http://java.sun.com/
products/javabeans/docs/.

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

14.2 What Are Beans? m

A bean class must have a zero-argument (default) constructor.
You can satisfy this requirement either by explicitly defining such a
constructor or by omitting all constructors, which results in a
zero-argument constructor being created automatically. The default
constructor will be called when JSP elements create beans. In fact, as
we see in Chapter 15 (Integrating Servlets and JSP: The Model View
Controller (MVC) Architecture), it is quite common for a servlet to
create a bean, from which a JSP page merely looks up data. In that
case, the requirement that the bean have a zero-argument constructor
is waived.

A bean class should have no public instance variables (fields).
To be a bean that is accessible from JSP, a class should use accessor
methods instead of allowing direct access to the instance variables. We
hope you already follow this practice since it is an important design
strategy in object-oriented programming. In general, use of accessor
methods lets you do three things without users of your class changing
their code: (a) impose constraints on variable values (e.g., have the
setSpeed method of your Car class disallow negative speeds);

(b) change your internal data structures (e.g., change from English
units to metric units internally, but still have get SpeedInMPH and
getSpeedInKPH methods); (c) perform side effects automatically
when values change (e.g., update the user interface when
setPosition is called).

Persistent values should be accessed through methods called
getXxxx and setXxx. For example, if your Car class stores the
current number of passengers, you might have methods named
getNumPassengers (which takes no arguments and returns an int)
and setNumPassengers (which takes an int and has a void return
type). In such a case, the Car class is said to have a property named
numPassengers (notice the lowercase n in the property name, but
the uppercase N in the method names). If the class has a get Xxx
method but no corresponding set xXxx, the class is said to have a
read-only property named xxx.

The one exception to this naming convention is with boolean
properties: they are permitted to use a method called isXxx to look
up their values. So, for example, your Car class might have methods
called isLeased (which takes no arguments and returns a boolean)
and setLeased (which takes a boolean and has a void return
type), and would be said to have a boolean property named leased
(again, notice the lowercase leading letter in the property name).

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Chapter 14 m Using JavaBeans Components in JSP Documents

Although you can use JSP scriptlets or expressions to access arbitrary
methods of a class, standard JSP actions for accessing beans can only
make use of methods that use the get Xxx/set Xxx or isXxx/
setXxx naming convention.

14.3 Using Beans: Basic Tasks

You use three main constructs to build and manipulate JavaBeans components in JSP

pages:

* jsp:useBean. In the simplest case, this element builds a new bean.
It is normally used as follows:

<jsp:useBean id="beanName"
class="package.Class" />

If you supply a scope attribute (see Section 14.6, “Sharing Beans”),
the jsp:useBean element can either build a new bean or access a
preexisting one.

* jsp:getProperty. This element reads and outputs the value of a
bean property. Reading a property is a shorthand notation for calling a
method of the form getxxx. This element is used as follows:
<jsp:getProperty name="beanName"

property="propertyName" />

* jsp:setProperty. This element modifies a bean property (i.e.,

calls a method of the form setXxxx). It is normally used as follows:

<jsp:setProperty name="beanName"
property="propertyName"
value="propertyValue" />

The following subsections give details on these elements.

Building Beans: jsp:useBean

The jsp:useBean action lets you load a bean to be used in the JSP page. Beans
provide a very useful capability because they let you exploit the reusability of Java
classes without sacrificing the convenience that JSP adds over servlets alone.

The simplest syntax for specifying that a bean should be used is the following.

<jsp:useBean id="name" class="package.Class" />

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

14.3 Using Beans: Basic Tasks m

This statement usually means “instantiate an object of the class specified by
Class, and bind it to a variable in _jspService with the name specified by 1d.”
Note, however, that you use the fully qualified class name—the class name with
packages included. This requirement holds true regardless of whether you use
<%@ page import... %> toimport packages.

Core Warning

You must use the fully qualified class name for the class attribute of
jsp:useBean.

So, for example, the JSP action
<jsp:useBean i1d="bookl" class="coreservlets.Book" />

can normally be thought of as equivalent to the scriptlet

Q

<% coreservlets.Book bookl = new coreservlets.Book(); %>

Installing Bean Classes

The bean class definition should be placed in the same directories where servlets can
be installed, not in the directory that contains the JSP file. Just remember to use
packages (see Section 11.3 for details). Thus, the proper location for individual bean
classes is WEB-INF/classes/subdirectoryMatchingPackageName, as discussed in Sec-
tions 2.10 (Deployment Directories for Default Web Application: Summary) and
2.11 (Web Applications: A Preview). JAR files containing bean classes should be
placed in the WEB-INF/lib directory.

Core Approach

Place all your beans in packages. Install them in the normal Java code
directories: WEB-INF/classes/subdirectoryMatchingPackageName for
individual classes and WEB-INF/lib for JAR files.

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

m Chapter 14 m Using JavaBeans Components in JSP Documents

Using jsp:useBean Options:
scope, beanName, and type

Although it is convenient to think of jsp:useBean as being equivalent to building
an object and binding it to a local variable, jsp: useBean has additional options that
make it more powerful. As we’ll see in Section 14.6, you can specify a scope
attribute that associates the bean with more than just the current page. If beans can
be shared, it is useful to obtain references to existing beans, rather than always build-
ing a new object. So, the jsp:useBean action specifies that a new object is instanti-
ated only if there is no existing one with the same id and scope.

Rather than using the class attribute, you are permitted to use beanName
instead. The difference is that beanName can refer either to a class or to a file con-
taining a serialized bean object. The value of the beanName attribute is passed to the
instantiate method of java.beans.Bean.

In most cases, you want the local variable to have the same type as the object being
created. In a few cases, however, you might want the variable to be declared to have a
type that is a superclass of the actual bean type or is an interface that the bean imple-
ments. Use the type attribute to control this declaration, as in the following example.

<jsp:useBean id="threadl" class="mypackage.MyClass"
type="java.lang.Runnable" />

This use results in code similar to the following being inserted into the
_jspService method.

java.lang.Runnable threadl = new myPackage.MyClass () ;

A ClassCastException results if the actual class is not compatible with type.
Also, you can use type without class if the bean already exists and you merely
want to access an existing object, not create a new object. This is useful when you
share beans by using the scope attribute as discussed in Section 14.6.

Note that since jsp:useBean uses XML syntax, the format differs in three ways
from HTML syntax: the attribute names are case sensitive, either single or double
quotes can be used (but one or the other must be used), and the end of the tag is
marked with />, not just >. The first two syntactic differences apply to all JSP ele-
ments that look like jsp: xxx. The third difference applies unless the element is a
container with a separate start and end tag.

A few character sequences also require special handling in order to appear inside
attribute values. To get ' within an attribute value, use \ '. Similarly, to get ", use \ ";
to get \, use \\; to get 3>, use 3\>; and to get <%, use <\%.

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

14.3 Using Beans: Basic Tasks m

Accessing Bean Properties: jsp:getProperty

Once you have a bean, you can output its properties with jsp: getProperty, which
takes a name attribute that should match the id given in jsp:useBean and a
property attribute that names the property of interest.

Core Note

With jsp:useBean, the bean name is given by the id attribute. With
Jjsp:getProperty and jsp:setProperty, it is given by the name
attribute.

Instead of using jsp:getProperty, you could use a JSP expression and explic-
itly call a method on the object with the variable name specified by the id attribute.
For example, assuming that the Book class has a String property called title and
that you've created an instance called book1 by using the jsp:useBean example
given earlier in this section, you could insert the value of the tit1le property into the
JSP page in either of the following two ways.

<jsp:getProperty name="bookl" property="title" />
<%= bookl.getTitle() %>

The first approach is preferable in this case, since the syntax is more accessible to
Web page designers who are not familiar with the Java programming language. If you
create objects with jsp:useBean instead of an equivalent JSP scriptlet, be syntacti-
cally consistent and output bean properties with jsp:getProperty instead of the
equivalent JSP expression. However, direct access to the variable is useful when you
are using loops, conditional statements, and methods not represented as properties.

For you who are not familiar with the concept of bean properties, the standard
interpretation of the statement “this bean has a property of type T called foo™ is “this
class has a method called getFoo that returns something of type T, and it has
another method called setFoo that takes a T as an argument and stores it for later
access by getFoo.”

Setting Simple Bean Properties:

jsp:setProperty
To modify bean properties, you normally use jsp:setProperty. This action has
several different forms, but with the simplest form you supply three attributes: name

(which should match the id given by jsp:useBean), property (the name of the
property to change), and value (the new value). In Section 14.5 we present some

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

m Chapter 14 m Using JavaBeans Components in JSP Documents

alternative forms of jsp:setProperty that let you automatically associate a prop-
erty with a request parameter. That section also explains how to supply values that
are computed at request time (rather than fixed strings) and discusses the type con-
version conventions that let you supply string values for parameters that expect num-
bers, characters, or boolean values.

An alternative to using the jsp:setProperty action is to use a scriptlet that
explicitly calls methods on the bean object. For example, given the book1 object
shown earlier in this section, you could use either of the following two forms to mod-
ify the title property.

<jsp:setProperty name="bookl"

property="title"

value="Core Servlets and JavaServer Pages" />
<% bookl.setTitle("Core Servlets and JavaServer Pages"); %>

Using jsp: setProperty has the advantage that it is more accessible to the non-
programmer, but direct access to the object lets you perform more complex opera-
tions such as setting the value conditionally or calling methods other than get Xxx or
setXxx on the object.

14.4 Example: StringBean

Listing 14.1 presents a simple class called StringBean that is in the core-
servlets package. Because the class has no public instance variables (fields) and
has a zero-argument constructor since it doesn’t declare any explicit constructors, it
satisfies the basic criteria for being a bean. Since StringBean has a method called
getMessage that returns a String and another method called setMessage that
takes a String as an argument, in beans terminology the class is said to have a
String property called message.

Listing 14.2 shows a JSP file that uses the StringBean class. First, an instance of
StringBean is created with the jsp:useBean action as follows.

<jsp:useBean id="stringBean" class="coreservlets.StringBean" />

After this, the message property can be inserted into the page in either of the fol-
lowing two ways.

<jsp:getProperty name="stringBean" property="message" />
<%= stringBean.getMessage () %>

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

14.4 Example: StringBean 407

The message property can be modified in either of the following two ways.

<jsp:setProperty name="stringBean"
property="message"
value="some message" />

<% stringBean.setMessage ("some message"); %>

Please note that we do not recommend that you really mix the explicit Java syntax
and the XML syntax in the same page; this example is just meant to illustrate the
equivalent results of the two forms.

Core Approach

Whenever possible, avoid mixing the XML-compatible jsp :useBean
tags with JSP scripting elements containing explicit Java code.

Figure 14-2 shows the result.

AR RN StringBean.java

package coreservlets;

/** A simple bean that has a single String property
called message.
*/

public class StringBean {
private String message = "No message specified";

public String getMessage () {
return (message) ;

}

public void setMessage (String message) {
this.message = message;

}

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

408 Chapter 14 m Using JavaBeans Components in JSP Documents

(NI AE W StringBean.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Using JavaBeans with JSP</TITLE>
<LINK REL=STYLESHEET
HREF="JSP-Styles.css"
TYPE="text/css">
</HEAD>
<BODY>
<TABLE BORDER=5 ALIGN="CENTER">
<TR><TH CLASS="TITLE">
Using JavaBeans with JSP</TABLE>
<jsp:useBean id="stringBean" class="coreservlets.StringBean" />

Initial value (from jsp:getProperty):
<I><jsp:getProperty name="stringBean"
property="message" /></I>
Initial value (from JSP expression):
<I><%= stringBean.getMessage() %></I>
<jsp:setProperty name="stringBean"
property="message"
value="Best string bean: Fortex" />
Value after setting property with jsp:setProperty:
<I><jsp:getProperty name="stringBean"
property="message" /></I>
<% stringBean.setMessage("My favorite: Kentucky Wonder"); %>
Value after setting property with scriptlet:
<I><%= stringBean.getMessage() %></I>
</0L>
</BODY></HTML>

() Using JavaBeans with JSF - Netscape (=]

. File Edit Wiew Go Bookmarks Tools wWindow Help

| @0 Q @ Q |%http:,l’,l’Iocthost,ibeans,l’StringBean.jsp | @

Using JavaBeans with JSP|

1. Ttial value (from jsp:getProperty): Mo message specified
2. Tuitial value (from JSP expression): Mo message specified
3. Value after setting property with jsp:setProperty: Best string bean: Fortex
4. Value after setting property with scriptlet: My favorite: Kentucky Wonder

Docurment: Done (0,06 secs) | |:m:|ﬂ

Figure 14-2 Result of StringBean.jsp.

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

14.5 Setting Bean Properties: Advanced Techniques m

14.5 Setting Bean Properties:
Advanced Techniques

You normally use jsp:setProperty to set bean properties. The simplest form of
this action takes three attributes: name (which should match the id given by
jsp:useBean), property (the name of the property to change), and value (the
new value).

For example, the SaleEntry class shown in Listing 14.3 has an itemID property
(a String), a numItems property (an int), a discountCode property (a double),
and two read-only properties, itemCost and totalCost (each of type double).
Listing 14.4 shows a JSP file that builds an instance of the SaleEntry class by
means of:

<jsp:useBean id="entry" class="coreservlets.SaleEntry" />

Listing 14.5 (Figure 14-3) gives the HTML form that collects the request param-
eters. The results are shown in Figure 14-4.

Once the bean is instantiated, using a request parameter to set the itemID is
straightforward, as shown below.

<jsp:setProperty
name="entry"
property="itemID"
value='<%= request.getParameter ("itemID") %>' />

Notice that we used a JSP expression for the value attribute. Most JSP attribute
values have to be fixed strings, but the value attribute of jsp:setProperty is
permitted to be a request time expression. If the expression uses double quotes
internally, recall that single quotes can be used instead of double quotes around
attribute values and that \ * and \ " can be used to represent single or double quotes
within an attribute value. In any case, the point is that it is possible to use JSP expres-
sions here, but doing so requires the use of explicit Java code. In some applications,
avoiding such explicit code is the main reason for using beans in the first place.
Besides, as the next examples will show, the situation becomes much more compli-
cated when the bean property is not of type String. The next two subsections will
discuss how to solve these problems.

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

m Chapter 14 m Using JavaBeans Components in JSP Documents

(N PAE RN SaleEntry.java

package coreservlets;

/** Simple bean to illustrate the various forms
* of jsp:setProperty.
*/

public class SaleEntry {

private String itemID = "unknown";
private double discountCode = 1.0;
private int numItems = 0;

public String getItemID() {
return (itemID) ;

public void setItemID(String itemID) {

if (itemID != null) {
this.itemID = itemID;
} else {
this.itemID = "unknown";
}

public double getDiscountCode() {
return (discountCode) ;

public void setDiscountCode (double discountCode) {
this.discountCode = discountCode;

public int getNumItems () {
return (numItems) ;

public void setNumItems (int numItems) {
this.numItems = numItems;

// In real life, replace this with database lookup.
// See Chapters 17 and 18 for info on accessing databases
// from servlets and JSP pages.

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

14.5 Setting Bean Properties: Advanced Techniques m

WA E RN SaleEntry.java (continued)

public double getItemCost() {
double cost;
if (itemID.equals("al234")) {

cost = 12.99*getDiscountCode() ;
} else {
cost = -9999;

}

return (roundToPennies (cost)) ;

private double roundToPennies (double cost) {
return (Math.floor (cost*100)/100.0) ;

public double getTotalCost() {
return (getItemCost () * getNumItems());

Listing 14.4 [SEUSEIGANE)

-
-

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Using jsp:setProperty</TITLE>
<LINK REL=STYLESHEET
HREF="JSP-Styles.css"
TYPE="text/css">
</HEAD>
<BODY>
<CENTER>
<TABLE BORDER=5>
<TR><TH CLASS="TITLE">
Using jsp:setProperty</TABLE>
<jsp:useBean id="entry" class="coreservlets.SaleEntry" />
<jsp:setProperty
name="entry"
property="itemID"
value='<%= request.getParameter ("itemID") %>' />

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

m Chapter 14 m Using JavaBeans Components in JSP Documents

NEILHA RS SaleEntry1.jsp (continued)

<%
int numItemsOrdered = 1;
try {
numItemsOrdered =
Integer.parselInt (request.getParameter ("numItems"));
} catch(NumberFormatException nfe) {}
%>
<jsp:setProperty
name="entry"
property="numItems"
value="<%= numItemsOrdered %>" />
<%
double discountCode = 1.0;
try {
String discountString =
request .getParameter ("discountCode") ;
discountCode =
Double.parseDouble (discountString);
} catch(NumberFormatException nfe) ({}
%>
<jsp:setProperty
name="entry"
property="discountCode"
value="<%= discountCode %>" />

<TABLE BORDER=1>
<TR CLASS="COLORED">
<TH>Item ID<TH>Unit Price<TH>Number Ordered<TH>Total Price
<TR ALIGN="RIGHT">
<TD><jsp:getProperty name="entry" property="itemID" />
<TD>$<jsp:getProperty name="entry" property="itemCost" />
<TD><jsp:getProperty name="entry" property="numItems" />
<TD>S$<jsp:getProperty name="entry" property="totalCost" />
</TABLE>
</CENTER></BODY></HTML>

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

14.5 Setting Bean Properties: Advanced Techniques m

NNV RN SaleEntry1-Form.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Invoking SaleEntryl.jsp</TITLE>
<LINK REL=STYLESHEET
HREF="JSP-Styles.css"
TYPE="text/css">
</HEAD>
<BODY>
<CENTER>
<TABLE BORDER=5>
<TR><TH CLASS="TITLE">
Invoking SaleEntryl.jsp</TABLE>
<FORM ACTION="SaleEntryl.jsp">
Item ID: <INPUT TYPE="TEXT" NAME="itemID">

Number of Items: <INPUT TYPE="TEXT" NAME="numItems">

Discount Code: <INPUT TYPE="TEXT" NAME="discountCode"><P>
<INPUT TYPE="SUBMIT" VALUE="Show Price">
</FORM>
</CENTER></BODY></HTML>

/2 Invoking SaleEntry1.jsp - Microsoft Internet Explorer i] 4]
Fle Edit Wiew Favorites Tools Help ‘
-2 -804 BETI B I
Address I@ http:fflocalhost/beans/SaleEntry 1-Form, jsp j @GU
; ;I
Item ID: |a1234
Number of Items: |11
Discount Code: [1.95
Show Price |
|@ Done l_l_l_ E Local intranet 4

Figure 14-3 Front end to SaleEntry1.jsp.

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

m Chapter 14 m Using JavaBeans Components in JSP Documents

-} using jsp:setProperty - Microsoft Internet Explorer -0l x|

File Edit Yiew Favorites Tools Help |

-2 QRA VEFI DS
Address I@ http: fflocalhost/beansiSaleEntry 1 jspriternID=al234&numltemns=11&discountCade=0,95 j @GD

=

Using jsp:setProperty|

Item ID Unit Price Number Ordered Total Price
| al234] $12.34] 11 $13574

‘@ Dane l_l_ ’_ (5 Local intranet A
Figure 14-4 Result of SaleEntry1.jsp.

Associating Individual Properties
with Input Parameters

Setting the itemID property is easy since its value is a String. Setting the
numItems and discountCode properties is a bit more problematic since their val-
ues must be numbers whereas get Parameter returns a String. Here is the some-
what cumbersome code required to set numItems.

<%
int numItemsOrdered = 1;
try {
numItemsOrdered =
Integer.parselnt (request.getParameter ("numItems")) ;
} catch (NumberFormatException nfe) {}
%>
<jsp:setProperty
name="entry"
property="numItems"
value="<%= numItemsOrdered %>" />

Fortunately, JSP has a nice solution to this problem. It lets you associate a prop-
erty with a request parameter and automatically perform type conversion from
strings to numbers, characters, and boolean values. Instead of using the value
attribute, you use param to name an input parameter. The value of the named
request parameter is automatically used as the value of the bean property, and type
conversions from String to primitive types (byte, int, double, etc.) and wrapper
classes (Byte, Integer, Double, etc.) are automatically performed. If the specified
parameter is missing from the request, no action is taken (the system does not pass

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

14.5 Setting Bean Properties: Advanced Techniques

null to the associated property). So, for example, setting the numItems property
can be simplified to:

<jsp:setProperty
name="entry"
property="numItems"
param="numlItems" />

You can simplify the code slightly if the request parameter name and the bean
property name are the same. In that case, you can omit param as in the following
example.

<jsp:setProperty
name="entry"
property="numItems" /> <%-- param="numItems" is assumed. --%>

We prefer the slightly longer form that lists the parameter explicitly. Listing 14.6
shows the relevant part of the JSP page reworked in this manner.

(R Xl SaleEntry2.jsp

<jsp:useBean id="entry" class="coreservlets.SaleEntry" />
<jsp:setProperty
name="entry"
property="itemID"
param="itemID" />
<jsp:setProperty
name="entry"
property="numItems"
param="numItems" />
<jsp:setProperty
name="entry"
property="discountCode"
param="discountCode" />

Associating All Properties

with Request Parameters
Associating a property with a request parameter saves you the bother of performing
conversions for many of the simple built-in types. JSP lets you take the process one

step further by associating all properties with identically named request parameters.
All you have to do is to supply " *" for the property parameter. So, for example, all

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

m Chapter 14 m Using JavaBeans Components in JSP Documents

three of the jsp:setProperty statements of Listing 14.6 can be replaced by the
following simple line. Listing 14.7 shows the relevant part of the page.

<jsp:setProperty name="entry" property="*" />

(R SaleEntry3.jsp

<jsp:useBean id="entry" class="coreservlets.SaleEntry" />
<jsp:setProperty name="entry" property="*" />

This approach lets you define simple “form beans” whose properties correspond
to the request parameters and get populated automatically. The system starts with
the request parameters and looks for matching bean properties, not the other way
around. Thus, no action is taken for bean properties that have no matching request
parameter. This behavior means that the form beans need not be populated all at
once; instead, one submission can fill in part of the bean, another form can fill in
more, and so on. To make use of this capability, however, you need to share the bean
among multiple pages. See Section 14.6 (Sharing Beans) for details. Finally, note that
servlets can also use form beans, although only by making use of some custom utili-
ties. For details, see Section 4.7 (Automatically Populating Java Objects from
Request Parameters: Form Beans).

Although this approach is simple, three small warnings are in order.

* No action is taken when an input parameter is missing. In
particular, the system does not supply null as the property value. So,
you usually design your beans to have identifiable default values that
let you determine if a property has been modified.

¢ Automatic type conversion does not guard against illegal values
as effectively as does manual type conversion. In fact, despite the
convenience of automatic type conversion, some developers eschew
the automatic conversion, define all of their settable bean properties to
be of type String, and use explicit try/catch blocks to handle
malformed data. At the very least, you should consider the use of error
pages when using automatic type conversion.

e Bean property names and request parameters are case
sensitive. So, the property name and request parameter name must
match exactly.

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

14.6 Sharing Beans

14.6 Sharing Beans

Up to this point, we have treated the objects that were created with jsp:useBean
as though they were simply bound to local variables in the _jspService method
(which is called by the service method of the servlet that is generated from the
page). Although the beans are indeed bound to local variables, that is not the only
behavior. They are also stored in one of four different locations, depending on the
value of the optional scope attribute of jsp:useBean.

When you use scope, the system first looks for an existing bean of the specified
name in the designated location. Only when the system fails to find a preexisting
bean does it create a new one. This behavior lets a servlet handle complex user
requests by setting up beans, storing them in one of the three standard shared loca-
tions (the request, the session, or the servlet context), then forwarding the request to
one of several possible JSP pages to present results appropriate to the request data.
For details on this approach, see Chapter 15 (Integrating Servlets and JSP: The
Model View Controller (MVC) Architecture).

As described below, the scope attribute has four possible values: page (the
default), request, session, and application.

® <jsp:useBean ... scope="page" />
This is the default value; you get the same behavior if you omit the
scope attribute entirely. The page scope indicates that, in addition to
being bound to a local variable, the bean object should be placed in
the PageContext object for the duration of the current request.
Storing the object there means that servlet code can access it by
calling getAttribute on the predefined pageContext variable.

Since every page and every request has a different PageContext
object, using scope="page" (or omitting scope) indicates that the
bean is not shared and thus a new bean will be created for each
request.

¢ <jsp:useBean ... scope="request" />
This value signifies that, in addition to being bound to a local variable,
the bean object should be placed in the HttpServletRequest
object for the duration of the current request, where it is available by
means of the getAttribute method.

Although at first glance it appears that this scope also results in
unshared beans, two JSP pages or a JSP page and a servlet will share
request objects when you use jsp:include (Section 13.1),
jsp:forward (Section 13.3), or the include or forward methods
of RequestDispatcher (Chapter 15).

© Prentice Hall and Sun Microsystems Press. Personal use only.

417

J2EE training from the author: http://courses.coreservlets.com/

m Chapter 14 m Using JavaBeans Components in JSP Documents

Storing values in the request object is common when the MVC
(Model 2) architecture is used. For details, see Chapter 15.

¢ <jsp:useBean ... scope="session" />
This value means that, in addition to being bound to a local variable,
the bean will be stored in the HttpSession object associated with
the current request, where it can be retrieved with getAttribute.

Thus, this scope lets JSP pages easily perform the type of session
tracking described in Chapter 9.

® <jsp:useBean ... scope="application" />
This value means that, in addition to being bound to a local variable,
the bean will be stored in the ServletContext available through
the predefined application variable or by a call to
getServletContext. The ServletContext is shared by all
servlets and JSP pages in the Web application. Values in the
ServletContext can be retrieved with the getAttribute
method.

Creating Beans Conditionally

To make bean sharing more convenient, you can conditionally evaluate bean-related
elements in two situations.

First, a jsp :useBean element results in a new bean being instantiated only if no
bean with the same id and scope can be found. If a bean with the same id and
scope is found, the preexisting bean is simply bound to the variable referenced by
id.

Second, instead of

<jsp:useBean ... />
you can use
<jsp:useBean ...>statements</jsp:useBean>

The point of using the second form is that the statements between the
jsp:useBean start and end tags are executed only if a new bean is created, not if an
existing bean is used. Because jsp:useBean invokes the default (zero-argument)
constructor, you frequently need to modify the properties after the bean is created.
To mimic a constructor, however, you should make these modifications only when
the bean is first created, not when an existing (and presumably updated) bean is
accessed. No problem: multiple pages can contain jsp:setProperty statements
between the start and end tags of jsp:useBean; only the page first accessed exe-
cutes the statements.

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

14.6 Sharing Beans m

For example, Listing 14.8 shows a simple bean that defines two properties:
accessCount and firstPage. The accessCount property records cumulative
access counts to any of a set of related pages and thus should be executed for all
requests. The firstPage property stores the name of the first page that was
accessed and thus should be executed only by the page that is first accessed. To
enforce the distinction, we place the jsp: setProperty statement that updates the
accessCount property in unconditional code and place the jsp:setProperty
statement for firstPage between the start and end tags of jsp:useBean.

Listing 14.9 shows the first of three pages that use this approach. The source code
archive at http://www.coreservlets.com/ contains the other two nearly identical
pages. Figure 14-5 shows a typical result.

(AL RN AccessCountBean.java

package coreservlets;

/** Simple bean to illustrate sharing beans through
* use of the scope attribute of jsp:useBean.
*/

public class AccessCountBean {
private String firstPage;
private int accessCount = 1;

public String getFirstPage() {
return (firstPage) ;
}

public void setFirstPage(String firstPage) {
this.firstPage = firstPage;
}

public int getAccessCount () {
return (accessCount) ;

}

public void setAccessCountIncrement (int increment) {
accessCount = accessCount + increment;

}

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

m Chapter 14 m Using JavaBeans Components in JSP Documents

NP N SharedCountsT.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Shared Access Counts: Page 1</TITLE>
<LINK REL=STYLESHEET
HREF="JSP-Styles.css"
TYPE="text/css">
</HEAD>
<BODY>
<TABLE BORDER=5 ALIGN="CENTER">
<TR><TH CLASS="TITLE">
Shared Access Counts: Page 1</TABLE>
<P>
<jsp:useBean id="counter"
class="coreservlets.AccessCountBean"
scope="application">
<jsp:setProperty name="counter"
property="£firstPage"
value="SharedCountsl.jsp" />
</jsp:useBean>
Of SharedCountsl.jsp (this page),
SharedCounts2.jsp, and
SharedCounts3.jsp,
<jsp:getProperty name="counter" property="firstPage" />
was the first page accessed.
<P>
Collectively, the three pages have been accessed
<jsp:getProperty name="counter" property="accessCount" />
times.
<jsp:setProperty name="counter" property="accessCountIncrement"
value="1" />
</BODY></HTML>

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

14.7 Sharing Beans in Four Different Ways: An Example m

(8 shared Access Counts: Page 3 - Netscape 3=l
. File Edit Wew Go Bookmarks Tools Window Help

| @0 @0 @ @ |% http:{flocalhost/beans/sharedCounts3. jsp | @

Shared Access Counts: Page 3

Of SharedCounts3.jsp (this page), SharedCountsl . jsp, and SharedCounts2. jsp,
SharedCounts2.jsp was the fust page accessed.

Collectively, the three pages have been accessed 13 times.

Docurment: Done (0,05 secs) I E=r=g

Figure 14-5 Result of a user visiting SharedCounts3.jsp. The first page visited
by any user was SharedCounts2.jsp. SharedCounts1.jsp, SharedCounts2.jsp,
and SharedCounts3.jsp were collectively visited a total of twelve times after the
server was last started but before the visit shown in this figure.

14.7 Sharing Beans in Four Different
Ways: An Example

In this section, we give an extended example that illustrates the various aspects of
bean use:

e Using beans as utility classes that can be tested separately from JSP
pages.

¢ Using unshared (page-scoped) beans.

* Sharing request-scoped beans.

¢ Sharing session-scoped beans.

¢ Sharing application-scoped (i.e., ServletContext-scoped) beans.

Before moving on to the examples, one caution is warranted. When you store

beans in different scopes, be sure to use different names for each bean. Otherwise,
servers can get confused and retrieve the incorrect bean.

Core Warning

Do not use the same bean name for beans stored in different locations.
For every bean, use a unique value of id in jsp:useBean.

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

m Chapter 14 m Using JavaBeans Components in JSP Documents

Building the Bean and the Bean Tester

The fundamental use of beans is as basic utility (helper) classes. We want to reiterate
as strongly as possible: except for very short snippets, Java code that is directly
inserted into JSP pages is harder to write, compile, test, debug, and reuse than regu-
lar Java classes.

For example, Listing 14.10 presents a small Java object that represents a food
item with two properties: level and goesWith (i.e., four methods: getLevel,
setLevel, getGoesWith, and setGoesWith). Perhaps this object is so simple
that just looking at the source code suffices to show that it is implemented correctly.
Perhaps. But how many times have you thought that before, only to uncover a bug
later? In any case, a more complex class would surely require testing, so Listing 14.11
presents a test routine. Notice that the utility class represents a value in the applica-
tion domain and is not dependent on any servlet- or J[SP-specific classes. So, it can be
tested entirely independently of the server. Listing 14.12 shows some representative
output.

IE AR BakedBean.java

package coreservlets;
/** Small bean to illustrate various bean-sharing mechanisms. */

public class BakedBean {
private String level = "half-baked";
private String goesWith = "hot dogs";

public String getLevel () {
return(level) ;

}

public void setLevel (String newLevel) {
level = newLevel;

}

public String getGoesWith() {
return (goesWith) ;

}

public void setGoesWith(String dish) {
goesWith = dish;
}

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

14.7 Sharing Beans in Four Different Ways: An Example m

AE AP RN BakedBeanTest.java

package coreservlets;

/** A small command-line program to test the BakedBean. */

public class BakedBeanTest ({
public static void main(String[] args) {
BakedBean bean = new BakedBean() ;
System.out.println("Original bean: " +
"level=" + bean.getLevel() +
", goesWith=" + bean.getGoesWith());
if (args.length>1) {
bean.setLevel (args[0]) ;
bean.setGoesWith (args[1l]) ;
System.out.println("Updated bean: " +
"level=" + bean.getLevel () +
", goesWith=" + bean.getGoesWith()) ;

IE A PR P Output of BakedBeanTest.java

Prompt> java coreservlets.BakedBeanTest gourmet caviar
Original bean: level=half-baked, goesWith=hot dogs
Updated bean: level=gourmet, goesWith=caviar

Using scope="page"—No Sharing

OK, after (and only after) we are satisfied that the bean works properly, we are ready
to use it in a JSP page. The first application is to create, modify, and access the bean
entirely within a single page request. For that, we use the following:

e Create the bean: use jsp:useBean with scope="page" (or no
scope at all, since page is the default).

¢ Modify the bean: use jsp: setProperty with property=">*".
Then, supply request parameters that match the bean property names.

e Access the bean: use jsp:getProperty.

Listing 14.13 presents a JSP page that applies these three techniques. Figures
14-6 and 14-7 illustrate that the bean is available only for the life of the page.

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

m Chapter 14 m Using JavaBeans Components in JSP Documents

O AR BakedBeanDisplay-page.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Baked Bean Values: page-based Sharing</TITLE>
<LINK REL=STYLESHEET
HREF="JSP-Styles.css"
TYPE="text/css">
</HEAD>
<BODY>
<H1>Baked Bean Values: page-based Sharing</H1>
<jsp:useBean id="pageBean" class="coreservlets.BakedBean" />
<jsp:setProperty name="pageBean" property="*" />
<H2>Bean level:
<jsp:getProperty name="pageBean" property="level" /></H2>
<H2>Dish bean goes with:
<jsp:getProperty name="pageBean" property="goesWith" /></H2>
</BODY></HTML>

/3 Baked Bean Yalues: page-based Sharing - Microsoft Internet E -10] x|
File Edit ‘Wiew Fawvorites Tools Help |

-2 Q03 QLTS DS
Address I@_‘] http:fflocalhost/beans/BakedBeanDisplay-page. jsprgoeswith=chicken j @Go

El

Baked Bean Values:
page-based Sharing
Bean level: half-baked

Dish bean goes with: chicken

E
|g‘| Done l_l_ ’_ E Local intranet 4

Figure 14-6 Initial request to BakedBeanDisplay-page.jsp—BakedBean properties
persist within the page.

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

14.7 Sharing Beans in Four Different Ways: An Example m

3} Baked Bean Yalues: page-based Sharing - Microsoft Interne -10] x|

File Edt Wiew Favorites Tools Help |

¢ -0 QNG REDI (DI
Address I@ http:fflocalhost/beans/BakedBeanDisplay-page. jsp j @GD

El

Baked Bean Values:
page-based Sharing
Bean level: half-baked

Dish bean goes with: hot dogs
=l
[& oone [[Bl

Figure 14-7 Subsequent request to BakedBeanDisplay-page.jsp—BakedBean
properties do not persist between requests.

Using Request-Based Sharing

The second application is to create, modify, and access the bean within two different
pages that share the same request object. Recall that a second page shares the
request object of the first page if the second page is invoked with jsp:include,
jsp:forward, or the include or forward methods of RequestDispatcher.
To get the desired behavior, we use the following:

e Create the bean: use jsp:useBean with scope="request".

* Modify the bean: use jsp: setProperty with property=">*".
Then, supply request parameters that match the bean property names.

¢ Access the bean in the first page: use jsp:getProperty. Then,
use jsp:include to invoke the second page.

* Access the bean in the second page: use jsp:useBean with the
same 1d as on the first page, again with scope="request". Then,
use jsp:getProperty.

Listings 14.14 and 14.15 present a pair of JSP pages that applies these four tech-
niques. Figures 14-8 and 14-9 illustrate that the bean is available in the second page
but is not stored between requests.

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

m Chapter 14 m Using JavaBeans Components in JSP Documents

IEINHA R TN BakedBeanDisplay-request.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Baked Bean Values: request-based Sharing</TITLE>
<LINK REL=STYLESHEET
HREF="JSP-Styles.css"
TYPE="text/css">
</HEAD>
<BODY>
<H1>Baked Bean Values: request-based Sharing</H1>
<jsp:useBean id="requestBean" class="coreservlets.BakedBean"
scope="request" />
<jsp:setProperty name="requestBean" property="*" />
<H2>Bean level:
<jsp:getProperty name="requestBean" property="level" /></H2>
<H2>Dish bean goes with:
<jsp:getProperty name="requestBean" property="goesWith" /></H2>
<jsp:include page="BakedBeanDisplay-snippet.jsp" />
</BODY></HTML>

NOIIA R BakedBeanDisplay-snippet.jsp

<Hl1>Repeated Baked Bean Values: request-based Sharing</H1>

<jsp:useBean id="requestBean" class="coreservlets.BakedBean"
scope="request" />

<H2>Bean level:

<jsp:getProperty name="requestBean" property="level" /></H2>

<H2>Dish bean goes with:

<jsp:getProperty name="requestBean" property="goesWith" /></H2>

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

14.7 Sharing Beans in Four Different Ways: An Example 427

/3 Baked Bean Yalues: request-based Sharing - Microsoft Internet Explorer

-10] x|
File ~Edit Wiew Favortes Toadls Help ‘ﬁ

$- QEADEFIIE-I

Address I@ http:fflocahostfbeans/BakedBeanDisplay-request. jsprlevel=rawigoesiith=sashimi

= o
Baked Bean Values: request-
based Sharing

Bean level: raw

Dish bean goes with: sashimi

Repeated Baked Bean Values:
request-based Sharing

Bean level: raw

Dish bean goes with: sashimi

E
|&] pone [| |8 tocdlintranet 4

Figure 14-8 Initial request to BakedBeanDisplay-request.jsp—BakedBean properties
persist to included pages.

aBaked Bean Yalues: request-based Sharing - Microsoft Internet Explorer

=10lx|
Adhess [2] htp:ocolrastjbeans(okedeonDisplay request.sn = @
B
Baked Bean Values: request-
based Sharing
Bean level: half-baked
Dish bean goes with: hot dogs
Repeated Baked Bean Values:
request-based Sharing
Bean level: half-baked
Dish bean goes with: hot dogs
[&]oone !_!_l_

Figure 14-9 Subsequent request to BakedBeanDisplay-request.jsp—BakedBean
properties do not persist between requests.

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

m Chapter 14 m Using JavaBeans Components in JSP Documents

Using Session-Based Sharing

The third application involves two parts. First, we want to create, modify, and access
the bean within a page. Second, if the same client returns to the page, he or she
should see the previously modified bean. A classic case of session tracking. So, to get
the desired behavior, we use the following:

e Create the bean: use jsp:useBean with scope="session".

¢ Modify the bean: use jsp: setProperty with property="*".
Then, supply request parameters that match the bean property names.

* Access the bean in the initial request: use jsp:getProperty in
the request in which jsp: setProperty is invoked.

* Access the bean later: use jsp:getProperty in a request that
does not include request parameters and thus does not invoke
jsp:setProperty. If this request is from the same client (within
the session timeout), the previously modified value is seen. If this
request is from a different client (or after the session timeout), a newly
created bean is seen.

Listing 14.16 presents a JSP page that applies these techniques. Figure 14-10 shows
the initial request. Figures 14-11 and 14-12 illustrate that the bean is available in the
same session, but not in other sessions. Note that we would have gotten similar
behavior if the jsp:useBean and jsp:getProperty code were repeated in mul-
tiple JSP pages: as long as the pages are accessed by the same client, the previous val-
ues will be preserved.

IE A PR BakedBeanDisplay-session.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Baked Bean Values: session-based Sharing</TITLE>
<LINK REL=STYLESHEET

HREF="JSP-Styles.css"

TYPE="text/css">
</HEAD>
<BODY>
<H1>Baked Bean Values: session-based Sharing</H1>
<jsp:useBean id="sessionBean" class="coreservlets.BakedBean"

scope="session" />

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

14.7 Sharing Beans in Four Different Ways: An Example m

NEIIA R BakedBeanDisplay-session.jsp (continued)

<jsp:setProperty name="sessionBean" property="*" />
<H2>Bean level:

<jsp:getProperty name="sessionBean" property="level" /></H2>
<H2>Dish bean goes with:

<jsp:getProperty name="sessionBean" property="goesWith" /></H2>
</BODY></HTML>

3 Baked Bean Yalues: session-based Sharing - Microsoft Internet Exp -3l =l
File Edit Yiew Favorites Tools Help |

-2 -Qd|lAEFTB RS

Address I@ http:fflocalhost fbeans/BakedBeanbisplay-session. jsprlevel=inedible j @Go

Baked Bean Values:
session-based Sharing
Bean level: inedible

Dish bean goes with: hot dogs

[
‘E Done l_l_l_ E Local intranet v
Figure 14-10 Initial request to BakedBeanDisplay-session.jsp.
3 Baked Bean Yalues: session-based Sharing - Microsoft Internet Exp =1al x|
File Edit Wiew Favorites Tools Help ‘
-2 QR d QTS B G
Address I@_‘] http:fflocalhost/beans/BakedEeanDisplay-session. jsp j @GU
Bl
Baked Bean Values:
session-based Sharing
Bean level: inedible
Dish bean goes with: hot dogs
[
|Ej Done ’_l_l_ E Local intranet 4

Figure 14-11 Subsequent request to BakedBeanDisplay-session.jsp—BakedBean
properties persist between requests if the request is from the same client in the same session.

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Chapter 14 m Using JavaBeans Components in JSP Documents

(N) Baked Bean Yalues: session-based Sharing - Netscape -al =
. File Edit Wew Go Bookmarks Tools Window Help |

@o O @ O |%http:,l’,I’IocaIhDst,l’beans,l’BakedBeanDispIay-session.jsp | j@

Baked Bean Values:
session-based Sharing

Bean level: half-baked
Dish bean goes with: hot dogs

Docurment: Done (0,05 secs) =l £

Figure 14-12 Subsequent request to BakedBeanDisplay-session.jsp—BakedBean
properties do not persist between requests if the request is from a different client (as here)
or is in a different session.

Using ServletContext-Based Sharing

The fourth and final application also involves two parts. First, we want to create,
modify, and access the bean within a page. Second, if any client comes to the page
later, he or she should see the previously modified bean. What else besides the
ServletContext provides such global access? So, to get the desired behavior, we
use the following:

e Create the bean: use jsp:useBean with
scope="application".

* Modify the bean: use jsp: setProperty with property="*".
Then, supply request parameters that match the bean property names.

¢ Access the bean in the initial request: use jsp:getProperty in
the request in which jsp: setProperty is invoked.

¢ Access the bean later: use jsp:getProperty in a request that
does not include request parameters and thus does not invoke
jsp:setProperty. Whether this request is from the same client or
a different client (regardless of the session timeout), the previously
modified value is seen.

Listing 14.17 presents a JSP page that applies these techniques. Figure 14-13
shows the initial request. Figures 14-14 and 1415 illustrate that the bean is available

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

14.7 Sharing Beans in Four Different Ways: An Example m

to multiple clients later. Note that we would have gotten similar behavior if the
jsp:useBean and jsp:getProperty code were repeated in multiple JSP pages.

IE A PR VAN BakedBeanDisplay-application.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>
<HEAD>
<TITLE>Baked Bean Values: application-based Sharing</TITLE>
<LINK REL=STYLESHEET

HREF="JSP-Styles.css"

TYPE="text/css">
</HEAD>
<BODY>
<H1>Baked Bean Values: application-based Sharing</H1>

<jsp:useBean id="applicationBean" class="coreservlets.BakedBean"

scope="application" />
<jsp:setProperty name="applicationBean" property="*" />
<H2>Bean level:

<jsp:getProperty name="applicationBean" property="level" /></H2>

<H2>Dish bean goes with:

<jsp:getProperty name="applicationBean" property="goesWith"/></

H2>
</BODY></HTML>

3 Baked Bean Yalues: application-based Sharing - Microsoft Internet Explol = IEIIﬂ

File Edit View Favorites Todls Help ﬁ
« -2 QB DEFS DD

Address I@ http:fflocalhost fbeans/BakedBeanDisplay-application. jspPgoesWith=steak j @GD

Baked Bean Values:
application-based Sharing
Bean level: half-baked

Dish bean goes with: steak

E
|Ej Dione ’_ ’_ ’_ E Local intranet 4

Figure 14-13 Initial request to BakedBeanDisplay-application.jsp.

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

m Chapter 14 m Using JavaBeans Components in JSP Documents

/4 Baked Bean Yalues: application-based Sharing - Microsoft Internet Explo o] 4]

File Edit ‘iew Favorites Todls Help ﬁ
*-2 QB3 VTS DS

Address I@ http:fflocalhost fbeans/BakedEeanDisplay-application. jsp j @GU

Baked Bean Values:
application-based Sharing
Bean level: half-baked

Dish bean goes with: steak

[
|E:| Done ’_ ’_ ’_ E Local intranet v

Figure 14-14 Subsequent request to BakedBeanDisplay-application.jsp—BakedBean
properties persist between requests.

I-EIJ Baked Bean ¥alues: application-based Sharing - Netscape — | [m] il
. File Edit Yew Go Bookmarks Tools ‘Window Help ‘

@0 Q @ Q |%http:,l’,l’locaIh0st,l’beans,l’BakedBeanDisplay-application.jsp | @
- b

Baked Bean Values:
application-based Sharing

Bean level: half-baked

Dish bean goes with: steak

Document: Done (0,05 secs) [By

Figure 14-15 Subsequent request to BakedBeanDisplay-application—BakedBean
properties persist between requests even if the request is from a different client (as here) or
is in a different session.

© Prentice Hall and Sun Microsystems Press. Personal use only.

